Automatic and semi-automatic weapons have employed a variety of gas-operated systems utilizing the pressure of combustion gases released upon firing of a round to engage and displace a piston operatively associated with a bolt mechanism to unlock, extract, eject, feed, reload, lock and cock before firing the next round. Most of the prior art systems employ a piston-cylinder arrangement mounted parallel with the gun barrel, although U.S. Pat. No. 4,817,496 proposes utilizing the gun barrel itself as an in situ piston with large and small outer diameters being operatively associated with a sliding cylinder having corresponding large and small linear diameter portions mounted coaxially with and displaceable relative to the gun barrel. Such a system is subject to undue thermal expansion of the multi-diameter gun barrel negatively affecting operability and reliability. Moreover, such a system having a long stroke requires elaborate machining of the gun barrel outer surfaces and the cylinder for effecting the comparatively long stroke of the cylinder.
There exists, therefore, a need to provide a novel system that overcomes the above-noted and other drawbacks of the existing systems.
The present invention is directed to a new and improved gas operating system for engaging the automatic or semi-automatic action of small arms. The new operating system in one aspect has essentially three fundamental components: a short, displaceable cylinder with a gas block ring secured thereto, a short, fixed piston attached coaxially to a gun barrel, and a single locking nut, advantageously in the form of a threaded flash suppressor. The piston includes gas block rings at its rearward exterior surfaces. The cylinder has a short stroke between radial forward and rear stops fixed on the barrel, which short stroke may be finely adjusted by threaded axial displacement of the rear stop.
Pressurized combustion gas from fired ammunition fills a gas chamber formed by the interiors of the piston and cylinder, the gas entering through radial ports in the barrel. The new gas operating system may be machined and assembled/disassembled with great ease and may be readily adapted for employment in any small arms. The system may be fine tuned for usage with a wide spectrum of ammunition.
In refined embodiments, either a manually adjustable valving mechanism or an automatic valving mechanism is associated with the piston to permit controlled escape of combustion gases through the forward piston wall to reduce the pressure in the gas chamber.
The present invention in one aspect provides a gas operating system for engaging the automatic or semi-automatic action of a small arms weapon. The system comprises a gun barrel having a plurality of radial ports and having radial forward and rear stops fixed thereon. The system further comprises a displaceable cylinder with a gas ring block secured thereto, the cylinder having a short stroke between the radial forward and rear stops fixed on the gun barrel. The system further comprises a fixed piston attached coaxial to the gun barrel and having gas block sealing rings at rearward exterior surfaces of the piston. A gas chamber is formed by interior walls of the cylinder and piston and by outer surfaces of the gun barrel, wherein gas tightness of the gas chamber is established by the gas ring block of the cylinder and by the gas blocking sealing rings of the piston. The gas chamber receives in operation pressurized combustion gas from fired ammunition, the gas entering through the radial ports of the gun barrel. The system further comprises a single locking nut comprising a threaded flash suppressor, configured to lock the piston over the gun barrel. The rear stop is cylindrical and is threaded axially to the gun barrel so that the rear stop is rotatable to finely adjust the short stroke of the cylinder.
The present invention in another aspect provides a gas operating system for engaging the automatic or semi-automatic action of a small arms weapon. The system comprises a gun barrel having a plurality of radial ports. A fixed piston is mounted coaxial with and secured to the gun barrel, the piston having annular grooves formed on rearward outer walls of the piston and gas blocking sealing rings disposed in the annular grooves. A sliding cylinder is mounted telescopically on the piston, the cylinder having inner surfaces and an interior wall and being open at a forward end and closed by a rear wall. A gas chamber is formed in part by the interior wall of the cylinder and outer surfaces of the gun barrel and further by the inner surfaces and a rear wall of the cylinder. The ear wall of the cylinder has a circular opening supporting a gas sealing ring of the cylinder which slidingly and sealingly engages the outer surfaces of the gun barrel, wherein gas tightness of the gas chamber is established by the gas sealing ring of the cylinder and by the gas blocking sealing rings of the piston. The gas chamber is being configured to, in operation, receive from the gun barrel pressurized combustion gas from fired ammunition, the gas entering through the radial ports of the gun barrel, the gas acting against the cylinder to effect rearward movement of the cylinder with respect to the piston. A bolt carrier 40 freely engages the rear wall of the cylinder and is configured to be engaged by the rearward movement of the cylinder to start the action of the weapon. The bolt carrier is forward biased and in operation urges the cylinder back to its forwardmost position, thereby expelling gas from the gas chamber back through the radial ports and out the gun barrel.
The present invention in another aspect provides a gas operating system for engaging the automatic or semi-automatic action of a small arms weapon. The system comprises a gun barrel having a plurality of radial ports and having radial forward and rear stops fixed thereon. The system further comprises a displaceable cylinder with a gas ring block secured thereto, the cylinder having a short stroke between the radial forward and rear stops fixed on the gun barrel. A fixed piston is attached coaxial to the gun barrel and has gas block sealing rings at rearward exterior surfaces of the piston. A gas chamber is formed by interior walls of the cylinder and piston and by outer surfaces of the gun barrel. Gas tightness of the gas chamber is established by the gas ring block of the cylinder and by the gas blocking sealing rings of the piston. The gas chamber receives in operation pressurized combustion gas from fired ammunition, the gas entering through the radial ports of the gun barrel. The rear stop is cylindrical and is threaded axially to the gun barrel so that the rear stop is rotatable to finely adjust the short stroke of the displaceable cylinder.
For a more complete understanding of the operation of gas operating system of the invention and a better appreciation of its attendant advantages, reference should be made to the following detailed description taken in conjunction with the accompanying drawings.
Referring now to
The cylinder 12 is open at its forward end and is closed by a rear wall 18 which has a circular opening 19 supporting a gas sealing ring 20 (
Specifically, the piston element 10 includes a shoulder 21 which engages a shoulder 22 formed on the outer barrel surface. In accordance with the invention, the piston element may be slipped over the barrel 11 until the shoulders 21 and 22 are engaged and then may be locked in place by threading a locking nut member 23, advantageously in the form of a flash suppressor having internal threads 24, over the threaded end 25 of the gun barrel 11. This permits simple and rapid assembly and disassembly in accordance with the principles of the invention. Alternatively, the piston element 10 itself may be directly threadedly fastened to the barrel 11 eliminating the lock nut member.
The gun barrel has a series of radial ports 26 communicating with chamber 17 which permit combustion gases under pressure to leave the bore of the barrel 11 and fill the gas chamber 17 to act against the cylinder to displace it rearwardly with respect to the piston 10. The number and dimensions of the ports 26 may be varied for different power ammunition. The rearward movement of the cylinder will engage the bolt carrier 40 to start the “action” of the weapon.
The forward travel of the cylinder 12 is limited by the stop disc 15; the rearward travel of the cylinder 12 is limited by a cylindrical rear stop 27 secured by interior threads 28 to mating threads 29 on the barrel. Thus, the total length of the cylinder displacement or cylinder stroke may be precisely adjusted to lengthen or shorten it by rotatingly threading the rear stop 27 along the barrel.
In accordance with the invention, gas blocking sealing rings 30 are disposed in annular retaining channels 31 formed on the outer walls of the piston 12 (
In operation, a small arms weapon incorporating the new gas operating system will include a bolt carrier mechanism 40 having an arm element freely engaging the rear wall 18 of the cylinder without mechanical fastening thereto. Typically, the bolt carrier 40 will be forwardly biased by springs (not shown) to urge the cylinder 12 into its forwardmost position shown in
In each cycle, excess combustion gas is expelled from the gas chamber 17 and back through ports 26 and out the barrel 11 when the cylinder 12 reciprocates forwardly under spring bias from the bolt carrier. This provides self-cleaning and eliminates carbon powder build-up.
In instances where the nature of the ammunition employed creates undue pressure in the gas chamber 17, a simple manual valving arrangement for the piston 10 may be incorporated. Relief of pressure is provided by ventilation ports 50 formed in the piston forward wall and selectively closeable by stopper surfaces 51 on arms 52 of an associated rotatable collar 53 supported in slots 54 (e.g., semi-circular or some other suitable configuration) formed in the front stop disc 13. This valving arrangement is shown in
As shown in
Alternatively to the manual rotatable valving arrangement of
As shown in
In accordance with this specific aspect of the invention, a suppressor 23, such as the suppressor shown in
Accordingly, with respect to the present invention according to this embodiment, the valve is annular to the barrel. Gas is moved out of the system. Gas is moved from the gas block into the suppressor, to reduce the pressure inside the system and increase the performance of the suppressor. To the contrary, in some prior art systems, the intent is to reduce the flux of the gas that is going into the gas system. However, this could be problematic because it could cause the closing of the small hole of the mechanism due to the unburnt powder and, further, such a system may be highly complicated and difficult to machine.
It will be appreciated that the operating system of the present invention provides many advantages and improvements over known gas piston operating systems. The new design is greatly simplified and especially streamlined, permitting ease of manufacture, cleaning, assembly and disassembly of the components of the system. One unthreading operation of the locking nut/suppressor permits disassembly. Only three parts need to be cleaned. The new design is easy to machine due to only turning operations and one machining operation on the three parts. The use of separate gas sealing rings on the piston and cylinder establishes a gas tight chamber for combustion gases to displace the cylinder while simplifying fabrication. Mounting the piston concentrically on the barrel effectively safely spaces the sliding cylinder from the barrel and eliminates detrimental effects of thermal expansion of the barrel.
The overall design of the new operating system enables an effective mechanism having a short stroke to be reliably incorporated into a small envelope of a small arms barrel. This permits construction of compact and concealable weapons with powerful small caliber. The new design accommodates the inclusion of sufficient gas ports to fire extremely low pressure ammunition. Moreover, by increasing the diameter and number of barrel gas ports, contamination of the weapon is significantly reduced.
The new system can be employed with weapons of widely disparate calibers. The length of the stroke may be adjusted along with sizing the ports and/or varying the number of ports to “fine tune” the operating system to the ammunition being fired in terms of bullet weights and generated gas pressures. The spring-biased valving provided in conjunction with the system is simple and efficient and permits further “fine tuning” of the gas operating system to particular caliber ammunition while having the ability to avoid manual adjustments. By virtue of the features of the present invention it is possible to avoid the manual adjustments of users that are often critical under a stressful operation in the field. The automatic biased valving may be employed in conventional gas operating systems as well as the new and improved annular system disclosed herein.
It should be understood, of course, that the specific form of the invention herein illustrated and described is intended to be representative only, as certain changes may be made therein without departing from the clear teachings of the disclosure. Thus, it should be understood that the embodiments herein have been presented by way of example, and not limitation. It will be apparent to persons skilled in the relevant art(s) that various changes in form and detail can be made therein without departing from the spirit and scope of the present invention. Thus, the present invention should not be limited by any above-described exemplary embodiment.
In addition, it should be understood that the figures illustrated in the attachments, which highlight the functionality and advantages of the present invention, are presented for example purposes only. The architecture of the present invention is sufficiently flexible and configurable, such that it may be utilized (and navigated) in ways other than that shown in the accompanying figures.
The present application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Appln. No. 62/019,974 filed Jul. 2, 2014, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62019974 | Jul 2014 | US |