Generally, polymeric materials have a poor transmissivity to light having a wavelength in the ultraviolet region of the spectrum. Additionally, polymeric materials typically have lower stiffness values than other optically transparent materials. Further, the processing of polymeric materials such that they may be permeable to certain gases may negatively affect the transmissivity and stiffness attributes of the polymeric material. Accordingly, the creation of an article which is both stiff and transparent to ultraviolet light, but which is permeable to gas, is desired.
According to one embodiment, a gas permeable glass window suitable for use with liquid interface additive manufacturing includes an optically transparent glass article greater than about 0.5 millimeters in thickness. The glass article defines a first surface and a second surface. A plurality of gas channels are disposed through the article from the first surface to the second surface. The gas channels occupy less than about 1.0% of a surface area of the article and are configured such that the article has a gas permeability between about 10 barrers and about 2000 barrers.
According to another embodiment, a method of forming a gas permeable glass window includes steps of providing an optically transparent glass article having a first surface and a second surface, focusing a pulsed laser beam into a laser beam focal line, viewed along the beam propagation direction, and forming a plurality of gas channels in the article by repeatedly directing the laser beam focal line into the optically transparent glass article at an angle of incidence to the first surface of the glass article. The laser beam focal line generates an induced absorption within the article and each induced absorption produces a gas channel along the laser beam focal line from the first surface to the second surface within the article. The number and diameter of the gas channels is determined based on a desired gas permeability through the article.
According to another embodiment, a gas permeable window includes an optically transparent article defining a first surface and a second surface. A plurality of gas channels extend from the first surface to the second surface. The gas channels are disposed at an angle between about 0° to about 15° relative to an axis orthogonal to the first and second surfaces. The angle of the channels increases with an increasing distance from a central point.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are merely exemplary, and are intended to provide an overview or framework to understanding the nature and character of the claims. The accompanying drawings are included to provide a further understanding and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiments, and together with the description, serve to explain principles and operation of the various embodiments.
In the drawings:
Reference will now be made in detail to the present preferred embodiments, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivates thereof shall relate to a gas permeable window 10 as oriented in
Referring now to
In the depicted embodiment, the gas channels 26 are evenly spaced in a grid pattern across the first and second surfaces 18, 22 of the article 14, but may additionally or alternatively be arranged in other configurations and patterns. For example, the gas channels 26 may be randomly spaced across the article 14, in an aperiodic pattern, or in other patterns or arrangements not susceptible to easy recognition by a human eye. The density, or number of gas channels 26 per unit area, may range between about 10 per square millimeter to about 40,000 per square millimeter, or range between about 50 per square millimeter to about 20,000 per square millimeter, or range between about 100 per square millimeter to about 400 per square millimeter. Additionally, portions of the article 14 may have higher or lower densities of gas channels 26 relative to other portions. For example, the density of gas channels may vary according to a pattern, randomly, and may incorporate areas where there are no gas channels (e.g., direct center or edges of the article 14). The distance d between each of the gas channels 26 may range, depending on the gas channel 26 orientations, between about 1 micron to about 400 microns, more specifically between about 5 microns to about 250 microns, and more specifically between about 50 microns to about 100 microns.
The diameter of the gas channels 26 may be in the range of about 0.1 microns to about 250 microns, or in the range of about 0.2 microns to about 100 microns, or in the range of about 0.25 microns to about 50 microns. It should be understood that the diameter of the gas channels 26 may vary from channel to channel, or may vary as a function of the gas channel's location within the article 14. The diameter of the gas channels 26, and the thickness t of the optically transparent article 14, may be set based on a desired aspect ratio of the gas channels 26. The aspect ratio is measured as the length of the gas channels 26 (e.g., the thickness t of the article 14) to the diameter of the gas channels 26. The aspect ratio of the gas channels 26 may be in the range of about 20:1 to about 50,000:1, or may be in the range of about 10:1 to about 12,000:1, or may be in the range of about 50:1 to about 500:1. In some embodiments, each gas channel 26 has the same or a substantially similar aspect ratio across the article 14, while in other embodiments the aspect ratios of the gas channels 26 may vary (e.g., via increasing or decreasing the diameter of individual gas channels 26). For example, in some embodiments, the aspect ratio of the gas channels 26 may be assigned randomly, while in other embodiments, the aspect ratio may change or vary from channel to channel based on a larger pattern or location of the individual gas channel 26 on the article 14. In some embodiments, high aspect ratios of the gas channels 26 are desirable, as thin gas channels 26 may minimize optical distortions of light passing through the optically transparent article 14. Additionally, high aspect ratio gas channels 26 may reduce any artifacts in images created from light transmitted through the article 14. Further, the fraction of surface area of the article 14 that is occupied by the gas channels 26 may also affect the light transmittance of the gas permeable window 10. The fraction of surface area of the article 14 covered by the gas channels 26 may be less than about 2.0%, more specifically less than about 1.0%, even more specifically less than about 0.1%, and in some embodiments, less than about 0.01%.
The formation of gas channels 26 through the optically transparent article 14 allows fluids such as gases (e.g., air or pressurized gases) to pass through the gas permeable window 10, from one side to another. Depending on a desired level of permeability through the gas permeable window 10, the diameter, number, and/or distance d between the gas channels 26 may be altered. The gas permeability of the article 14 may range between about 0.1 barrers to about 3000 barrers, or range between about 10 barrers and about 2000 barrers, or range between about 100 barrers to about 500 barrers. Quantified differently, as a system leak rate, the window 10 may have a permeability greater than about 5 PSI per hour, or greater than 10 PSI per hour, or greater than 20 PSI per hour. Under a pressure of about 1 atmosphere, the article 10 should deflect less than about 200 microns, more specifically less than about 100 microns, and even more specifically, less than about 50 microns.
In the depicted embodiment of
Referring now to the depicted embodiment of
Referring now to
Referring now to
Through use of the ultra-short pulsed laser, it is possible to create microscopic (e.g., in a range of between about 0.1 microns to about 0.5 microns in diameter, or in a range between about 0.1 microns to about 2.0 microns) gas channels 26 in the optically transparent article 14 using one or more high energy pulses or one or more bursts of high energy pulses. The gas channels 26 are regions of the article 14 material modified by the laser. The laser-induced modifications disrupt the structure of the article 14 material. Structural disruptions include compaction, melting, dislodging of material, rearrangements, and bond scission. The gas channels 26 extend into the interior of the article 14 and have a cross-sectional shape consistent with the cross-sectional shape of the laser (generally circular). In embodiments where the gas channels 26 have a different shape, the gas channel 26 may be formed via multiple pulses while moving the article 14 and/or laser. The average diameter of the as manufactured gas channels 26 may be in the range from about 0.1 microns to about 50 microns, or in the range from about 1 microns to about 20 microns, or in the range from about 2 microns to about 10 microns, or in the range from about 0.1 microns to about 5 microns. The disrupted or modified area (e.g, compacted, melted, or otherwise changed) of the material surrounding the gas channels 26 in the embodiments disclosed herein, preferably has a diameter of less than about 50 microns, and, more specifically, less than about 10 microns.
The individual gas channels 26 can be created at rates of several hundred kilohertz (several hundred thousand per second, for example). Thus, with relative motion between the laser source and the article 14, the gas channels 26 can be placed adjacent to one another and in whatever pattern desired. The spatial separation and the size of the gas channels 26 may be at least partly selected based on a desired permeability of the window 10.
Turning to
As
As shown in
In an alternative embodiment, the gas channels 26 may be formed in the article 14 via laser percussion drilling. Percussion drilling is performed using a laser having a suitable wavelength and intensity, the laser spot size determining the final hole size. Wavelengths that may be used range between about 100 nanometers to about 1070 nanometers, or in a range of about 150 nanometers to about 400 nanometers. In an exemplary embodiment, the laser may utilize an ultraviolet laser beam having a wavelength of about 355 nanometers. During drilling, the laser is focused to a Gaussian spot on a surface (e.g., the first or second surface 18, 22) of the article 14, the Gaussian spot having a diameter in the range of about 1 micron to about 20 microns, or in a range of about 3 microns to about 10 microns. The laser is pulsed to repetitively strike the same location on the article 14. The laser pulse duration may range between about 1 nanosecond and about 100 nanoseconds, or range between about 10 nanoseconds to about 25 nanoseconds. The laser may be capable of between about 50,000 pulses per second to about 150,000 pulses per second, more specifically about 100,000 pulses per second. With each pulse, a portion of material is removed from the article 14 and the gas channel 26 begins to form. As the gas channel 26 is formed in the article 14, the gas channel 26 confines the laser beam and creates a long thin hole through the article 14. The laser is pulsed until the gas channel 26 is of a desired depth (e.g., fully through the article 14) within the article 14 and the laser is shut off. The laser beam and article 14 are then moved relative to one another and the process repeated to form the next gas channel 26. Percussion drilling may allow the gas channels 26 may be tapered. For example, in an embodiment where the percussion drilling laser is incident on the first surface 18 of the article 14, the gas channel 26 may have an opening at the first surface 18 of about 15 to about 25 microns in diameter, and an opening on the second surface 22 of the article 14 having a diameter of about 5 microns to about 10 microns.
Regardless of the laser drilling method employed, after formation of the gas channels 26 it may be desirable to increase the diameters of, or to heal any micro-cracks present in, the gas channels 26. In one embodiment, a chemical etching process may be employed to widen the gas channels 26 and heal any micro-cracks or areas of mechanical weakness that formed during laser drilling. An etchant 70 (
As depicted in
Once the first step is completed, a second step of separating the sheets 40 from one another is performed and the sheets 40 are etched in the etchant 70 as described above. Etching of the sheets 40 separately ensures that the liquid etchant 70 fully enters the holes 44 such that the healing and widening of the gas channels 26 is done evenly. Finally, after etching, the sheets 40 are cleaned and assembled to form the article 14. In embodiments where the article 14 is composed of multiple sheets 40, the article 14 may be held together via retaining pins or other suitable bonding and alignment techniques. Aligning of the sheets 40 causes the holes 44 to be substantially in alignment, thereby forming the gas channels 26. By utilizing this technique, proper etching of high aspect ratio gas channels 26 within the article 14 can be assured because there is less distance for the etchant 70 to flow through. Additionally, laser drilling the plurality of sheets 40 at the same time may provide a manufacturing advantage in increased throughput.
It should be understood that the laser drilling of the gas channels 26 may be performed on articles 14 before or after an ion-exchange process has been carried out on the article. Exemplary ion-exchange processes include alkali, alkali-earth, and/or transition metal doping of the article 14.
Referring now to
The light source 128 may be a projector coupled with a controller and a memory and configured to project an image with the ultraviolet light 124 of sections of a polymeric part 120 to be constructed. As a portion of the polymeric part 120 is formed on the build surface 116, the mechanical stepper 112 is advanced upward, moving the polymeric part 120 away from the gas permeable window 26 and allowing fluid in the bath 108 to flow between the polymeric part 120 and the gas permeable window 26. The light source 128 then projects a different image of the polymeric part 120 which causes the bath 108 to polymerize on the polymeric part 120 such that the next portion of the polymeric part 120 is formed. To prevent the polymeric part 120 from forming directly on the gas permeable window 10, the gas channels 26 allow a polymerization inhibiting gas (e.g., oxygen) to be passed into the bath 108 thereby forming a “dead zone” where the polymerization of the bath 108 does not take place. The polymerization inhibiting gas is supplied via a gas source 136. The gas source 136 may provide gas at a pressure in a range of about 0.1 atmospheres to about 10 atmospheres. By determining the desired rate of growth of the polymeric part 120, the thickness of the dead zone, and therefore the required amount of polymerization inhibiting gas introduced, may be determined. By varying the diameter and number of gas channels 26 disposed through the gas permeable window 10, the necessary permeability may be met to allow proper part 120 growth.
As depicted in
In another embodiment, the gas permeable window 10 may be utilized in aeronautical applications where differential pressures across the gas permeable window 10 would desirably be minimized. For example, the gas permeable window 10 may form a pane of a dual pane window for an airplane. In such an embodiment, it would be desirable for gas trapped between the panes to be allowed to equalize with the air space of a cabin of the airplane such that the differential pressure does not cause the window to shatter or otherwise break.
It will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit or scope of the claims.
This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/139,238 filed on Mar. 27, 2015, the content of which is relied upon and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1790397 | Woods et al. | Jan 1931 | A |
2682134 | Stookey | Jun 1954 | A |
2749794 | O'Leary | Jun 1956 | A |
3647410 | Heaton et al. | Mar 1972 | A |
3695497 | Dear | Oct 1972 | A |
3695498 | Dear | Oct 1972 | A |
3729302 | Heaton | Apr 1973 | A |
3775084 | Heaton | Nov 1973 | A |
4226607 | Domken | Oct 1980 | A |
4441008 | Chan | Apr 1984 | A |
4546231 | Gresser et al. | Oct 1985 | A |
4646308 | Kafka et al. | Feb 1987 | A |
4764930 | Bille et al. | Aug 1988 | A |
4891054 | Bricker et al. | Jan 1990 | A |
4907586 | Bille et al. | Mar 1990 | A |
4918751 | Pessot et al. | Apr 1990 | A |
4929065 | Hagerty et al. | May 1990 | A |
5035918 | Vyas | Jul 1991 | A |
5040182 | Spinelli et al. | Aug 1991 | A |
5104210 | Tokas | Apr 1992 | A |
5108857 | Kitayama et al. | Apr 1992 | A |
5112722 | Tsujino et al. | May 1992 | A |
5114834 | Nachshon | May 1992 | A |
5265107 | Delfyett, Jr. | Nov 1993 | A |
5400350 | Galvanauskas | Mar 1995 | A |
5434875 | Rieger et al. | Jul 1995 | A |
5436925 | Lin et al. | Jul 1995 | A |
5553093 | Ramaswamy et al. | Sep 1996 | A |
5574597 | Kataoka et al. | Nov 1996 | A |
5586138 | Yokoyama | Dec 1996 | A |
5656186 | Mourou et al. | Aug 1997 | A |
5676866 | In Den Baumen et al. | Oct 1997 | A |
5684642 | Zumoto et al. | Nov 1997 | A |
5696782 | Harter et al. | Dec 1997 | A |
5736709 | Neiheisel | Apr 1998 | A |
5776220 | Allaire et al. | Jul 1998 | A |
6016223 | Suzuki et al. | Jan 2000 | A |
6016324 | Rieger et al. | Jan 2000 | A |
6033583 | Musket et al. | Mar 2000 | A |
6038055 | Hänsch et al. | Mar 2000 | A |
6055829 | Witzmann et al. | May 2000 | A |
6078599 | Everage et al. | Jun 2000 | A |
6156030 | Neev | Dec 2000 | A |
6160835 | Kwon | Dec 2000 | A |
6186384 | Sawada | Feb 2001 | B1 |
6210401 | Lai | Apr 2001 | B1 |
6256328 | Delfyett et al. | Jul 2001 | B1 |
6259151 | Morrison | Jul 2001 | B1 |
6259512 | Mizouchi | Jul 2001 | B1 |
6272156 | Reed et al. | Aug 2001 | B1 |
6301932 | Allen et al. | Oct 2001 | B1 |
6322958 | Hayashi | Nov 2001 | B1 |
6339208 | Rockstroh et al. | Jan 2002 | B1 |
6373565 | Kafka et al. | Apr 2002 | B1 |
6381391 | Islam et al. | Apr 2002 | B1 |
6396856 | Sucha et al. | May 2002 | B1 |
6407360 | Choo et al. | Jun 2002 | B1 |
6438996 | Cuvelier | Aug 2002 | B1 |
6445491 | Sucha et al. | Sep 2002 | B2 |
6449301 | Wu et al. | Sep 2002 | B1 |
6484052 | Visuri et al. | Nov 2002 | B1 |
6489589 | Alexander | Dec 2002 | B1 |
6501578 | Bernstein et al. | Dec 2002 | B1 |
6552301 | Herman et al. | Apr 2003 | B2 |
6573026 | Aitken et al. | Jun 2003 | B1 |
6592703 | Habeck et al. | Jul 2003 | B1 |
6635849 | Okawa et al. | Oct 2003 | B1 |
6635850 | Amako et al. | Oct 2003 | B2 |
6720519 | Liu et al. | Apr 2004 | B2 |
6729161 | Miura et al. | May 2004 | B1 |
6744009 | Xuan et al. | Jun 2004 | B1 |
6787732 | Xuan et al. | Sep 2004 | B1 |
6800237 | Yamamoto et al. | Oct 2004 | B1 |
6800831 | Hoetzel | Oct 2004 | B1 |
6958094 | Ohmi et al. | Oct 2005 | B2 |
6992026 | Fukuyo et al. | Jan 2006 | B2 |
7009138 | Amako et al. | Mar 2006 | B2 |
7353829 | Wachter et al. | Apr 2008 | B1 |
7402773 | Nomaru | Jul 2008 | B2 |
7511886 | Schultz et al. | Mar 2009 | B2 |
7535634 | Savchenkov et al. | May 2009 | B1 |
7633033 | Thomas et al. | Dec 2009 | B2 |
7642483 | You et al. | Jan 2010 | B2 |
7649153 | Haight et al. | Jan 2010 | B2 |
7726532 | Gonoe | Jun 2010 | B2 |
8104385 | Hayashi et al. | Jan 2012 | B2 |
8118971 | Hori et al. | Feb 2012 | B2 |
8132427 | Brown et al. | Mar 2012 | B2 |
8168514 | Garner et al. | May 2012 | B2 |
8245539 | Lu et al. | Aug 2012 | B2 |
8245540 | Abramov et al. | Aug 2012 | B2 |
8269138 | Garner et al. | Sep 2012 | B2 |
8283595 | Fukuyo et al. | Oct 2012 | B2 |
8292141 | Cox et al. | Oct 2012 | B2 |
8296066 | Zhao et al. | Oct 2012 | B2 |
8327666 | Harvey et al. | Dec 2012 | B2 |
8341976 | Dejneka et al. | Jan 2013 | B2 |
8347651 | Abramov et al. | Jan 2013 | B2 |
8358888 | Ramachandran | Jan 2013 | B2 |
8444906 | Lee et al. | May 2013 | B2 |
8448471 | Kumatani et al. | May 2013 | B2 |
8518280 | Hsu et al. | Aug 2013 | B2 |
8549881 | Brown et al. | Oct 2013 | B2 |
8584354 | Cornejo et al. | Nov 2013 | B2 |
8584490 | Garner et al. | Nov 2013 | B2 |
8592716 | Abramov et al. | Nov 2013 | B2 |
8604380 | Howerton et al. | Dec 2013 | B2 |
8607590 | Glaesemann et al. | Dec 2013 | B2 |
8616024 | Cornejo et al. | Dec 2013 | B2 |
8635887 | Black et al. | Jan 2014 | B2 |
8680489 | Martinez et al. | Mar 2014 | B2 |
8685838 | Fukuyo et al. | Apr 2014 | B2 |
8697228 | Carre et al. | Apr 2014 | B2 |
8720228 | Li | May 2014 | B2 |
8826696 | Brown et al. | Sep 2014 | B2 |
8852698 | Fukumitsu | Oct 2014 | B2 |
8887529 | Lu et al. | Nov 2014 | B2 |
8916798 | Plüss | Dec 2014 | B2 |
8943855 | Gomez et al. | Feb 2015 | B2 |
8971053 | Kariya et al. | Mar 2015 | B2 |
9138913 | Arai et al. | Sep 2015 | B2 |
9227868 | Matsumoto et al. | Jan 2016 | B2 |
9290407 | Barefoot et al. | Mar 2016 | B2 |
9296066 | Hosseini et al. | Mar 2016 | B2 |
9324791 | Tamemoto | Apr 2016 | B2 |
9327381 | Lee et al. | May 2016 | B2 |
9446590 | Chen et al. | Sep 2016 | B2 |
9481598 | Bergh et al. | Nov 2016 | B2 |
20020046997 | Nam et al. | Apr 2002 | A1 |
20020082466 | Han | Jun 2002 | A1 |
20020097486 | Yamaguchi et al. | Jul 2002 | A1 |
20020110639 | Bruns | Aug 2002 | A1 |
20030006221 | Hong et al. | Jan 2003 | A1 |
20030007773 | Kondo et al. | Jan 2003 | A1 |
20050024743 | Camy-Peyret | Feb 2005 | A1 |
20050098548 | Kobayashi et al. | May 2005 | A1 |
20050115938 | Sawaki et al. | Jun 2005 | A1 |
20050274702 | Deshi | Dec 2005 | A1 |
20050277270 | Yoshikawa et al. | Dec 2005 | A1 |
20060011593 | Fukuyo | Jan 2006 | A1 |
20060028728 | Li | Feb 2006 | A1 |
20060109874 | Shiozaki et al. | May 2006 | A1 |
20060127679 | Gulati et al. | Jun 2006 | A1 |
20060227440 | Gluckstad | Oct 2006 | A1 |
20060266744 | Nomaru | Nov 2006 | A1 |
20060289410 | Morita et al. | Dec 2006 | A1 |
20070091977 | Sohn et al. | Apr 2007 | A1 |
20070111390 | Komura et al. | May 2007 | A1 |
20070111480 | Maruyama et al. | May 2007 | A1 |
20070119831 | Kandt | May 2007 | A1 |
20070132977 | Komatsuda | Jun 2007 | A1 |
20070138151 | Tanaka et al. | Jun 2007 | A1 |
20070177116 | Amako | Aug 2007 | A1 |
20070202619 | Tamura et al. | Aug 2007 | A1 |
20070298529 | Maeda et al. | Dec 2007 | A1 |
20080000884 | Sugiura et al. | Jan 2008 | A1 |
20080079940 | Sezerman et al. | Apr 2008 | A1 |
20080099444 | Misawa et al. | May 2008 | A1 |
20090013724 | Koyo et al. | Jan 2009 | A1 |
20090123766 | Peck | May 2009 | A1 |
20090176034 | Ruuttu et al. | Jul 2009 | A1 |
20090183764 | Meyer | Jul 2009 | A1 |
20090242528 | Howerton et al. | Oct 2009 | A1 |
20090250446 | Sakamoto | Oct 2009 | A1 |
20090294419 | Abramov et al. | Dec 2009 | A1 |
20090294422 | Lubatschowski et al. | Dec 2009 | A1 |
20090324899 | Feinstein et al. | Dec 2009 | A1 |
20100025387 | Arai et al. | Feb 2010 | A1 |
20100029460 | Shojiya et al. | Feb 2010 | A1 |
20100032087 | Takahashi et al. | Feb 2010 | A1 |
20100086741 | Bovatsek et al. | Apr 2010 | A1 |
20100089631 | Sakaguchi et al. | Apr 2010 | A1 |
20100089882 | Tamura | Apr 2010 | A1 |
20100102042 | Garner et al. | Apr 2010 | A1 |
20100129603 | Blick et al. | May 2010 | A1 |
20100147813 | Lei et al. | Jun 2010 | A1 |
20100252540 | Lei et al. | Oct 2010 | A1 |
20100252959 | Lei et al. | Oct 2010 | A1 |
20100276505 | Smith | Nov 2010 | A1 |
20100279067 | Sabia et al. | Nov 2010 | A1 |
20100287991 | Brown et al. | Nov 2010 | A1 |
20100326138 | Kumatani et al. | Dec 2010 | A1 |
20110049764 | Lee et al. | Mar 2011 | A1 |
20110049765 | Li et al. | Mar 2011 | A1 |
20110088324 | Wessel | Apr 2011 | A1 |
20110100401 | Fiorentini | May 2011 | A1 |
20110132881 | Liu | Jun 2011 | A1 |
20110139760 | Shah et al. | Jun 2011 | A1 |
20110183116 | Hung et al. | Jul 2011 | A1 |
20110210105 | Romashko et al. | Sep 2011 | A1 |
20110240611 | Sandström et al. | Oct 2011 | A1 |
20110277507 | Lu et al. | Nov 2011 | A1 |
20110318555 | Bookbinder et al. | Dec 2011 | A1 |
20120017642 | Teranishi et al. | Jan 2012 | A1 |
20120047951 | Dannoux et al. | Mar 2012 | A1 |
20120048604 | Cornejo et al. | Mar 2012 | A1 |
20120061440 | Roell | Mar 2012 | A1 |
20120064306 | Kang et al. | Mar 2012 | A1 |
20120067858 | Kangastupa et al. | Mar 2012 | A1 |
20120103018 | Lu et al. | May 2012 | A1 |
20120131962 | Mitsugi et al. | May 2012 | A1 |
20120135195 | Glaesemann et al. | May 2012 | A1 |
20120135607 | Shimoi et al. | May 2012 | A1 |
20120135608 | Shimoi et al. | May 2012 | A1 |
20120145331 | Gomez et al. | Jun 2012 | A1 |
20120196071 | Cornejo et al. | Aug 2012 | A1 |
20120234049 | Bolton | Sep 2012 | A1 |
20120234807 | Sercel et al. | Sep 2012 | A1 |
20120255935 | Kakui et al. | Oct 2012 | A1 |
20120299219 | Shimoi et al. | Nov 2012 | A1 |
20120302139 | Darcangelo et al. | Nov 2012 | A1 |
20130019637 | Sol et al. | Jan 2013 | A1 |
20130034688 | Koike et al. | Feb 2013 | A1 |
20130044371 | Rupp et al. | Feb 2013 | A1 |
20130056450 | Lissotschenko et al. | Mar 2013 | A1 |
20130061636 | Imai et al. | Mar 2013 | A1 |
20130068736 | Mielke et al. | Mar 2013 | A1 |
20130075480 | Yokogi et al. | Mar 2013 | A1 |
20130091897 | Fugii et al. | Apr 2013 | A1 |
20130122264 | Fujii et al. | May 2013 | A1 |
20130126573 | Hosseini et al. | May 2013 | A1 |
20130129947 | Harvey et al. | May 2013 | A1 |
20130133367 | Abramov et al. | May 2013 | A1 |
20130143416 | Norval | Jun 2013 | A1 |
20130149434 | Oh et al. | Jun 2013 | A1 |
20130149494 | Koike et al. | Jun 2013 | A1 |
20130167590 | Teranishi et al. | Jul 2013 | A1 |
20130174607 | Wootton et al. | Jul 2013 | A1 |
20130174610 | Teranishi et al. | Jul 2013 | A1 |
20130180285 | Kariya | Jul 2013 | A1 |
20130189806 | Hoshino | Jul 2013 | A1 |
20130192305 | Black et al. | Aug 2013 | A1 |
20130209731 | Nattermann et al. | Aug 2013 | A1 |
20130220982 | Thomas et al. | Aug 2013 | A1 |
20130221053 | Zhang | Aug 2013 | A1 |
20130224439 | Zhang et al. | Aug 2013 | A1 |
20130228918 | Chen et al. | Sep 2013 | A1 |
20130247615 | Boek et al. | Sep 2013 | A1 |
20130266757 | Giron et al. | Oct 2013 | A1 |
20130270240 | Kondo | Oct 2013 | A1 |
20130280495 | Matsumoto | Oct 2013 | A1 |
20130288010 | Akarapu et al. | Oct 2013 | A1 |
20130291598 | Saito et al. | Nov 2013 | A1 |
20130312460 | Kunishi et al. | Nov 2013 | A1 |
20130323469 | Abramov et al. | Dec 2013 | A1 |
20130334185 | Nomaru | Dec 2013 | A1 |
20130340480 | Nattermann et al. | Dec 2013 | A1 |
20140027951 | Srinivas et al. | Jan 2014 | A1 |
20140034730 | Lee | Feb 2014 | A1 |
20140042202 | Lee | Feb 2014 | A1 |
20140047957 | Wu | Feb 2014 | A1 |
20140102146 | Saito et al. | Apr 2014 | A1 |
20140110040 | Cok | Apr 2014 | A1 |
20140113797 | Yamada et al. | Apr 2014 | A1 |
20140133119 | Kariya et al. | May 2014 | A1 |
20140141217 | Gulati et al. | May 2014 | A1 |
20140147623 | Shorey et al. | May 2014 | A1 |
20140147624 | Streltsov et al. | May 2014 | A1 |
20140165652 | Saito | Jun 2014 | A1 |
20140174131 | Saito et al. | Jun 2014 | A1 |
20140199519 | Schillinger et al. | Jul 2014 | A1 |
20140216108 | Weigel et al. | Aug 2014 | A1 |
20140290310 | Green | Oct 2014 | A1 |
20140320947 | Egerton et al. | Oct 2014 | A1 |
20140333929 | Sung et al. | Nov 2014 | A1 |
20140361463 | DeSimone et al. | Dec 2014 | A1 |
20150034612 | Hosseini et al. | Feb 2015 | A1 |
20150038313 | Hosseini | Feb 2015 | A1 |
20150075221 | Kawaguchi et al. | Mar 2015 | A1 |
20150075222 | Mader | Mar 2015 | A1 |
20150110442 | Zimmel et al. | Apr 2015 | A1 |
20150118522 | Hosseini | Apr 2015 | A1 |
20150136743 | Hosseini | May 2015 | A1 |
20150140241 | Hosseini | May 2015 | A1 |
20150140735 | Hosseini | May 2015 | A1 |
20150151380 | Hosseini | Jun 2015 | A1 |
20150158120 | Courvoisier et al. | Jun 2015 | A1 |
20150165548 | Marjanovic et al. | Jun 2015 | A1 |
20150165560 | Hackert et al. | Jun 2015 | A1 |
20150165562 | Marjanovic et al. | Jun 2015 | A1 |
20150165563 | Manley et al. | Jun 2015 | A1 |
20150166391 | Marjanovic et al. | Jun 2015 | A1 |
20150166393 | Marjanovic et al. | Jun 2015 | A1 |
20150166394 | Marjanovic et al. | Jun 2015 | A1 |
20150166395 | Marjanovic et al. | Jun 2015 | A1 |
20150166396 | Marjanovic et al. | Jun 2015 | A1 |
20150166397 | Marjanovic et al. | Jun 2015 | A1 |
20150183679 | Saito | Jul 2015 | A1 |
20150232369 | Marjanovic et al. | Aug 2015 | A1 |
20150299018 | Bhuyan et al. | Oct 2015 | A1 |
20150360991 | Grundmueller et al. | Dec 2015 | A1 |
20150367442 | Bovatsek et al. | Dec 2015 | A1 |
20160008927 | Grundmueller et al. | Jan 2016 | A1 |
20160009066 | Nieber et al. | Jan 2016 | A1 |
20160023922 | Addiego et al. | Jan 2016 | A1 |
20160031745 | Ortner et al. | Feb 2016 | A1 |
20160060156 | Krueger et al. | Mar 2016 | A1 |
20160279895 | Marjanovic et al. | Sep 2016 | A1 |
20160280580 | Bohme | Sep 2016 | A1 |
20160290791 | Buono et al. | Oct 2016 | A1 |
20170052381 | Huang et al. | Feb 2017 | A1 |
20170368638 | Tayebati et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2388062 | Jul 2000 | CN |
1283409 | Nov 2006 | CN |
101502914 | Aug 2009 | CN |
201357287 | Dec 2009 | CN |
101637849 | Feb 2010 | CN |
201471092 | May 2010 | CN |
102672355 | Sep 2012 | CN |
102898014 | Jan 2013 | CN |
102923939 | Feb 2013 | CN |
103013374 | Apr 2013 | CN |
103143841 | Jun 2013 | CN |
203021443 | Jun 2013 | CN |
103273195 | Sep 2013 | CN |
103316990 | Sep 2013 | CN |
103359947 | Oct 2013 | CN |
103359948 | Oct 2013 | CN |
103531414 | Jan 2014 | CN |
103746027 | Apr 2014 | CN |
203509350 | Apr 2014 | CN |
104344202 | Feb 2015 | CN |
102672355 | May 2015 | CN |
2231330 | Jan 1974 | DE |
102006035555 | Jan 2008 | DE |
102012010635 | Nov 2013 | DE |
102012110971 | May 2014 | DE |
102013223637 | May 2015 | DE |
270897 | Feb 1992 | EP |
0609978 | Aug 1994 | EP |
656241 | Dec 1998 | EP |
938946 | Sep 1999 | EP |
949541 | Oct 1999 | EP |
1159104 | Aug 2004 | EP |
1609559 | Dec 2005 | EP |
1043110 | Aug 2006 | EP |
2133170 | Dec 2009 | EP |
2202545 | Jun 2010 | EP |
2574983 | Apr 2013 | EP |
2754524 | Jul 2014 | EP |
2781296 | Sep 2014 | EP |
2783784 | Oct 2014 | EP |
2859984 | Apr 2015 | EP |
2989294 | Oct 2013 | FR |
1242172 | Aug 1971 | GB |
2481190 | Jan 2015 | GB |
1179770 | Jul 1989 | JP |
6318756 | Nov 1994 | JP |
9106243 | Apr 1997 | JP |
11197498 | Jul 1999 | JP |
11269683 | Oct 1999 | JP |
11330597 | Nov 1999 | JP |
11347758 | Dec 1999 | JP |
2001138083 | May 2001 | JP |
2002210730 | Jul 2002 | JP |
2002228818 | Aug 2002 | JP |
2003025085 | Jan 2003 | JP |
2003114400 | Apr 2003 | JP |
2003154517 | May 2003 | JP |
2003181668 | Jul 2003 | JP |
2003238178 | Aug 2003 | JP |
2004209675 | Jul 2004 | JP |
2005104819 | Apr 2005 | JP |
2005205440 | Aug 2005 | JP |
2005288503 | Oct 2005 | JP |
3775250 | May 2006 | JP |
3775410 | May 2006 | JP |
2006130691 | May 2006 | JP |
2006248885 | Sep 2006 | JP |
2007021548 | Feb 2007 | JP |
2007196277 | Aug 2007 | JP |
2007253203 | Oct 2007 | JP |
2009056482 | Mar 2009 | JP |
2009172633 | Aug 2009 | JP |
2010017990 | Jan 2010 | JP |
4592855 | Dec 2010 | JP |
2011049398 | Mar 2011 | JP |
4672689 | Apr 2011 | JP |
2011517299 | Jun 2011 | JP |
4880820 | Feb 2012 | JP |
2012024782 | Feb 2012 | JP |
2012031018 | Feb 2012 | JP |
2012159749 | Aug 2012 | JP |
2012187618 | Oct 2012 | JP |
2013007842 | Jan 2013 | JP |
2013031879 | Feb 2013 | JP |
2013043808 | Mar 2013 | JP |
2013075802 | Apr 2013 | JP |
2013091578 | May 2013 | JP |
5274085 | Aug 2013 | JP |
5300544 | Sep 2013 | JP |
2013187247 | Sep 2013 | JP |
2013203630 | Oct 2013 | JP |
2013203631 | Oct 2013 | JP |
2013223886 | Oct 2013 | JP |
2012015366 | Feb 2002 | KR |
2009057161 | Jun 2009 | KR |
1020621 | Mar 2011 | KR |
1120471 | Mar 2012 | KR |
2012074508 | Jul 2012 | KR |
2013031380 | Mar 2013 | KR |
1269474 | May 2013 | KR |
2013124646 | Nov 2013 | KR |
1344368 | Dec 2013 | KR |
2014022980 | Feb 2014 | KR |
2014022981 | Feb 2014 | KR |
2014064220 | May 2014 | KR |
201139025 | Nov 2011 | TW |
201226345 | Jul 2012 | TW |
1999029243 | Jul 1999 | WO |
1999063900 | Dec 1999 | WO |
2004110693 | Dec 2004 | WO |
2006073098 | Jul 2006 | WO |
2007094160 | Aug 2007 | WO |
2008049389 | May 2008 | WO |
2008080182 | Jul 2008 | WO |
2008128612 | Oct 2008 | WO |
2009114375 | Sep 2009 | WO |
2010035736 | Apr 2010 | WO |
2010111609 | Sep 2010 | WO |
2010129459 | Nov 2010 | WO |
2011025908 | Mar 2011 | WO |
2011056781 | May 2011 | WO |
2012006736 | Jan 2012 | WO |
2012075072 | Jun 2012 | WO |
2012108052 | Aug 2012 | WO |
2012166753 | Dec 2012 | WO |
2013022148 | Feb 2013 | WO |
2013043173 | Mar 2013 | WO |
2013138802 | Sep 2013 | WO |
2013150990 | Oct 2013 | WO |
2013153195 | Oct 2013 | WO |
2014028022 | Feb 2014 | WO |
2014064492 | May 2014 | WO |
2014079478 | May 2014 | WO |
2014079570 | May 2014 | WO |
2014085663 | Jun 2014 | WO |
2014111385 | Jul 2014 | WO |
2014111794 | Jul 2014 | WO |
2014161534 | Oct 2014 | WO |
2014161535 | Oct 2014 | WO |
201577113 | May 2015 | WO |
2015077113 | May 2015 | WO |
2015095088 | Jun 2015 | WO |
2015095090 | Jun 2015 | WO |
2015095146 | Jun 2015 | WO |
2015127583 | Sep 2015 | WO |
2016005455 | Jan 2016 | WO |
2016010954 | Jan 2016 | WO |
20160154284 | Sep 2016 | WO |
Entry |
---|
International Search Report and Written Opinion PCT/US2016/023381 dated Sep. 20, 2016. |
Abramov et al., “Laser separation of chemically strengthened glass”; Physics Procedia 5 (2010) 285-290, Elsevier.; doi: 10.1016/j.phpro.2010.08.054. |
Arimoto et al., “Imaging properties of axicon in a scanning optical system”; Applied Optics, Nov. 1, 1992, vol. 31, No. 31, pp. 6653-6657. |
“TruMicro 5000” Product Manual, Trumpf Laser GmbH + Co. KG, pp. 1-4, Aug. 2011. |
Bhuyan et al., “High aspect ratio nanochannel machining using single shot femtosecond Bessel beams”; Applied Physics Letters 97, 081102 (2010); doi: 10.1063/1.3479419. |
Bhuyan et al., “High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams”; Optics Express (2010) vol. 18, No. 2, pp. 566-574. |
Cubeddu et al., “A compact time-resolved reflectance system for dual-wavelength multichannel assessment of tissue absorption and scattering”; Part of the SPIE Conference on Optical Tomography and Spectroscopy of Tissue III, San Jose, CA (Jan. 1999), SPIE vol. 3597, 0277-786X/99, pp. 450-455. |
Cubeddu et al., “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance”; Applied Optics, vol. 38, No. 16, Jun. 1, 1999, pp. 3670-3680. |
Ding et al., “High-resolution optical coherence tomography over a large depth range with an axicon lens”; Optic Letters, vol. 27, No. 4, pp. 243-245, Feb. 15, 2002, Optical Society of America. |
“EagleEtch” Product Brochure, EuropeTec USA Inc., pp. 1-8, Aug. 1, 2014. |
Girkin et al., “Macroscopic multiphoton biomedical imaging using semiconductor saturable Bragg reflector modelocked Lasers”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 92-98. |
Glezer et al., “Ultrafast-laser driven micro-explosions in transparent materials”; Applied Physics Letters, vol. 71 (1997), pp. 882-884. |
Golub, I., “Fresnel axicon”; Optic Letters, vol. 31, No. 12, Jun. 15, 2006, Optical Society of America, pp. 1890-1892. |
Herman et al., “Laser micromachining of ‘transparent’ fused silica with 1-ps pulses and pulse trains”; Part of the SPIE Conference on Commercial and Biomedical Applications of Ultrafast Lasers, San Jose, CA (Jan. 1999), SPIE vol. 3616, 0277-786X/99, pp. 148-155. |
Kosareva et al., “Formation of extended plasma channels in a condensed medium upon axicon focusing of a femtosecond laser pulse”; Quantum Electronics 35 (11) 1013-1014 (2005), Kvantovaya Elektronika and Turpion Ltd.; doi: 10.1070/QE2005v035n11ABEH013031. |
Krüger et al., “Femtosecond-pulse visible laser processing of transparent materials”; Applied Surface Science 96-98 (1996) 430-438. |
Krüger et al., “Laser micromachining of barium aluminium borosilicate glass with pluse durations between 20 fs and 3 ps”; Applied Surface Science 127-129 (1998) 892-898. |
Krüger et al., “Structuring of dielectric and metallic materials with ultrashort laser pulses between 20 fs and 3 ps”; SPIE vol. 2991, 0277-786X/97, pp. 40-47. |
Lapczyna et al., “Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses”; Applied Physics A 69 [Suppl.], S883-S886, Springer-Verlag (1999); doi: 10.1007/s003399900300. |
Perry et al., “Ultrashort-pulse laser machining”; UCRL-JC-132159 Rev 1., Jan. 22, 1999, pp. 1-24. |
Perry et al., “Ultrashort-pulse laser machining”; UCRL-ID-132159, Sep. 1998, pp. 1-38. |
Perry et al., “Ultrashort-pulse laser machining of dielectric materials”; Journal of Applied Physics, vol. 85, No. 9, May 1, 1999, American Institute of Physics, pp. 6803-6810. |
“Pharos High-power femtosecond laser system” product brochure; Light Conversion, Vilnius, LT; Apr. 18, 2011, pp. 1-2. |
Polynkin et al., “Extended filamentation with temporally chirped femtosecond Bessel-Gauss beams in air”; Optics Express, vol. 17, No. 2, Jan. 19, 2009, OSA, pp. 575-584. |
Serafetinides et al., “Ultra-short pulsed laser ablation of polymers”; Applied Surface Science 180 (2001) 42-56. |
Sundaram et al., “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses”; Nature Miracles, vol. 1, Dec. 2002, Nature Publishing Group (2002), pp. 217-224. |
Vanagas et al., “Glass cutting by femtosecond pulsed irradiation”; J. Micro/Nanolith. MEMS MOEMS. 3(2), 358-363 (Apr. 1, 2004); doi: 10.1117/1.1668274. |
Varel et al., “Micromachining of quartz with ultrashort laser pulses”; Applied Physics A 65, 367-373, Springer-Verlag (1997). |
Yoshino et al., “Micromachining with a high repetition rate femtosecond fiber laser”; JLMN—Journal of Laser Micro/Nanoengineering vol. 3, No. 3 (2008), pp. 157-162. |
Zeng et al. “Characteristic analysis of a refractive axicon system for optical trepanning”; Optical Engineering 45(9), 094302 (Sep. 2006), pp. 094302-1-094302-10. |
Zhang et al., “Design of diffractive-phase axicon illuminated by a Gaussian-profile beam”; Acta Physica Sinica (overseas edition), vol. 5, No. 5 (May 1996) Chin. Phys. Soc., 1004-423X/96/05050354-11, pp. 354-364. |
Abakians, H. et al.; Evaporative Cutting of a Semitransparent Body With a Moving CW Laser; Journal of Heat Transfer; Nov. 1988; pp. 924-930; vol. 110; ASME. |
Ahmed, F. et al.; Display glass cutting by femtosecond laser induced single shot periodic void array; Applied Physics A Material Science & Processing; Jun. 3, 2008; pp. 189-192; vol. 93; Springer-Verlag. |
Bagchi, S. et al.; Fast ion beams from intense, femtosecond laser irradiated nanostructured surfaces; Applied Physics B Lasers and Optics; Jun. 27, 2007; pp. 167-173; vol. 88; Springer-Verlag. |
Bhuyan, M.K. et al.; Femtosecond non-diffracting Bessel beams and controlled nanoscale ablation; ResearchGate Conference Paper; Sep. 2011; pp. 1-4. |
Bhuyan, M.K. et al.; Laser micro- and nanostructuring using femtosecond Bessel beams; The European Physical Journal Special Topics; Dec. 7, 2011; pp. 101-110; vol. 1999; EDP Sciences, Springer-Verlag. |
Bhuyan, M.K. et al.; Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams; Applied Physics Letters; Jan. 14, 2014; pp. 02110-1-021107-4; vol. 104; AIP Publishing LLC. |
Bhuyan, M.K. et al.; Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass; Nonlinear Optics and Applications IV; 2010; pp. 77281V-1-77281V-8; vol. 7728; SPIE. |
Case Design Guidelines for Apple Devices; Sep. 13, 2013; pp. 1-58; Apple Inc. |
Chiao, R. Y. et al.; Self-Trapping of Optical Beams; Physical Review Letters; Oct. 12, 1964; pp. 479-482; vol. 13, No. 15. |
Corning EAGLE AMLCD Glass Substrates Material Information; Apr. 2005; pp. MIE 201-1-MIE 201-3; Corning Incorporated. |
Corning 1737 AMLCD Glass Substrates Material Information; Aug. 2002; pp. MIE 101-1-MIE 101-3; Corning Incorporated. |
Couairon, A. et al.; Femtosecond filamentation in transparent media; ScienceDirect Physical Reports; Feb. 6, 2007; pp. 47-189; vol. 441; Elsevier B.V. |
Courvoisier, F. et al.; Applications of femtosecond Bessel beams to laser ablation; Applied Physics A Materials Science & Processing; Sep. 6, 2012; pp. 29-34; vol. 112; Springer-Verlag. |
Courvoisier, F. et al.; Surface nanoprocessing with nondiffracting femtosecond Bessel beams; Optics Letters; Oct. 15, 2009; pp. 3163-3165; vol. 34, No. 20; Optical Society of America. |
Dong, M. et al.; On-axis irradiance distribution of axicons illuminated by spherical wave; ScienceDirect Optics & Laser Technology; Sep. 2007; pp. 1258-1261; vol. 39; Elsevier Ltd. |
Duocastella, M. et al.; Bessel and annular beams for materials processing; Laser & Photonics Reviews; 2012; pp. 607-621; vol. 6, No. 5. |
Durnin, J.; Exact solutions for nondiffracting beams. I. The scalar theory; J. Opt. Soc. Am. A; Apr. 1987; pp. 651-654; vol. 4, No. 4; Optical Society of America. |
Eaton, S. et al.; Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate; Optics Express; Jun. 13, 2005; pp. 4708-4716; vol. 13, No. 12; Optical Society of America. |
Gattass, R. et al.; Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates; Optics Express; Jun. 12, 2006; pp. 5279-5284; vol. 14, No. 12; Optical Society of America. |
Gori, F. et al.; Analytical derivation of the optimum triplicator; Optics Communications; Dec. 1, 1998; pp. 13-16; vol. 157; Elsevier B.V. |
Honda, M. et al.; A Novel Polymer Film that Controls Light Transmission; Progress in Pacific Polymer Science 3; 1994; pp. 159-169; Springer-Verlag Berlin Heidelberg. |
Hu, Z. et al.; 5-Axis Laser Cutting Interference Detection and Correction Based on STL Model; Chinese Journal of Lasers; Dec. 2009; pp. 3313-3317; vol. 36, No. 12. |
Huang, Z. et al.; Laser etching of glass substrates by 1064 nm laser irradiation; Applied Physics A Materials Science & Processing; Jun. 6, 2008; pp. 159-163; vol. 93; Springer-Verlag. |
Juodkazis, S. et al.; Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures; Physical Review Letters; Apr. 28, 2006; pp. 166101-1-166101-4; vol. 96; The American Physical Society. |
Karlsson, S. et al.; The Technology of Chemical Glass Strengthening—A Review; Glass Technology—European Journal of Glass Science and Technology Part A; Apr. 2010; pp. 41-54; vol. 51, No. 2. |
Levy, U. et al.; Design, fabrication, and characterization of circular Dammann gratings based on grayscale lithography; Optics Letters; Mar. 15, 2010; pp. 880-882; vol. 35, No. 6; Optical Society of America. |
Liu, X. et al.; Laser Ablation and Micromachining with Ultrashort Laser Pulses; IEEE Journal of Quantum Electronics; Oct. 1997; p. 1706-1716; vol. 33, No. 10; IEEE. |
Maeda, K. et al.; Optical performance of angle dependent light control glass; Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X; 1991; pp. 138-148; vol. 1536; SPIE. |
Mbise, G. et al.; Angular selective window coatings; theory and experiments; J. Phys. D: Appl. Phys.; 1997; pp. 2103-2122; vol. 30; IOP Publishing Ltd. |
McGloin, D. et al.; Bessel beams: diffraction in a new light; Contemporary Physics; Jan.-Feb. 2005; pp. 15-28; vol. 46; Taylor & Francis Ltd. |
Merola, F. et al.; Characterization of Bessel beams generated by polymeric microaxicons; Measurement Science and Technology; May 15, 2012; pp. 1-10; vol. 23; IOP Publishing Ltd. |
Mirkhalaf, M. et al.; Overcoming the brittleness of glass through bio-inspiration and micro-architecture; Nature Communications; Jan. 28, 2014; pp. 1-9; Macmillan Publishers Limited. |
Romero, L. et al.; Theory of optimal beam splitting by phase gratings. II. Square and hexagonal gratings; J. Opt. Soc. Am. A; Aug. 2007; pp. 2296-2312; vol. 24, No. 8; Optical Society of America. |
Salleo, A. et al.; Machining of transparent materials using an IR and UV nanosecond pulsed laser; Applied Physics A Materials Science & Processing; Sep. 20, 2000; pp. 601-608; vol. 71; Springer-Verlag. |
Serafetinides, A. et al.; Polymer Ablation by Ultra-Short Pulsed Lasers; Proceedings of SPIE; 2000; pp. 409-415. |
Shah, L. et al.; Micromachining with a High Repetition Rate Femtosecond Fiber Laser; JLMN—Journal of Laser Micro/Nanoengineering; Nov. 2008; pp. 157-162; vol. 3, No. 3. |
Shealy, D. et al.; Geometric optics-based design of laser beam shapers; Opt. Eng.; Nov. 2003; pp. 3123-3138; vol. 42, No. 11; Society of Photo-Optical Instrumentation Engineers. |
Stoian, R. et al.; Spatial and temporal laser pulse design for material processing on ultrafast scales; Applied Physics A Materials Science & Processing; Jan. 1, 2014; pp. 119-127; vol. 114; Springer-Verlag Berlin Heidelberg. |
Thiele, E.; Relation between Catalytic Activity and Size of Particle; Industrial and Engineering Chemistry; Jul. 1939; pp. 916-920; vol. 31, No. 7. |
Toytman, I. et al.; Optical breakdown in transparent media with adjustable axial length and location; Optic Express; Nov. 22, 2010; pp. 24688-24698; vol. 18, No. 24; Optical Society of America. |
Velpula, P. et al.; Ultrafast imaging of free carriers: controlled excitation with chirped ultrafast laser Bessel beams; Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XIX; Proc. of SPIE; 2014; pp. 896711-1-896711-8; vol. 8967; SPIE. |
Wang, Z. et al.; Investigation on CO2 laser irradiation inducing glass strip peeling for microchannel formation; Biomicrofluidics; Mar. 12, 2012; pp. 012820-1-012820-12; vol. 6; American Institute of Physics. |
Ra & RMS: Calculating Surface Roughness; Harrison Eelectropolishing; 2012. |
Wu, W. et al.; Optimal Orientation of the Cutting Head for Enhancing Smoothness Movement in Three-Dimensional Laser Cutting; Chinese Journal of Lasers; Jan. 2013; pgs. 0103005-1-0103005-7, vol. 10, No. 1. |
GT ASF Grown Sapphire Cover and Touch Screen Material; www.gtat.com; 2012; pp. 1-2; GTAT Corporation. |
Xu, H. et al.; Optimization of 3D laser cutting head orientation based on minimum energy consumption; Int J Adv Manuf Technol; Jun. 28, 2014; pp. 1283-1291; vol. 74; Springer-Verlag London. |
Yan, Y. et al.; Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes; Optics Letters; Aug. 15, 2012; pp. 3294-3296; vol. 37, No. 16; Optical Society of America. |
Kerr. “Filamentary tracks formed in transparent optical glass by laser beam self-focusing. II. Theoretical Analysis” Physical Review A. 4(3) 1971, pp. 1196-1218. |
Number | Date | Country | |
---|---|---|---|
20160279895 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62139238 | Mar 2015 | US |