The following relates to embodiments of a gas processing and management system for switching between operating modes.
Natural gas streams are processed for ethane recovery and ethane rejection at different operating modes. Currently, different compressors may be required to switch between ethane recovery and ethane rejection modes. To accomplish the switch between rejection and recovery, two independent compressor are used or the existing compressor must be completely or partially disassembled, and outfitted with the equipment necessary for recovery or rejection.
Thus, there is a need for a single compressor unit that can effectively switch between recovery and rejection modes.
An aspect relates to a compressor, comprising: a first compressor section, and a second compressor section, wherein a first operating mode for a gas processing system is switched to a second operating mode by opening and closing one or more valves controlling a flow of the natural gas stream to the first compressor section and the second compressor section
An aspect relates to a gas processing and management system comprising: a multi-stage compressor, the multi stage compressor including a first compression section and a second compression section, an inlet receiving a stream of natural gas containing an ethane gas, a first conduit fluidically connected to the inlet, the first conduit extending from the inlet to the first compression section of the multi-stage compressor, a second conduit fluidically connected to the inlet, the second conduit extending from the inlet to the second compression section of the multi-stage compressor, a first valve controlling a flow of the stream of natural gas to the second compression section of the multi-stage compressor, a second valve controlling a flow of the stream of natural gas between the first conduit and the second conduit, and a third valve controlling a flow of the stream of natural gas between the first compression section and an outlet.
An aspect relates to a method for switching between a first operating mode to rejection second operating mode in a gas processing system including a multi-stage compressor, a first valve, a second valve, and a third valve, the method comprising: closing the first valve and the third valve so that a stream of natural gas flows from an inlet to a first compressor section of the multi-stage compressor and then to a second compressor section of the multi-stage compressor in series operation after compression by the first compressor section, and opening the first valve and the third valve while closing the second valve so that the stream of natural gas flows from the inlet to the first compressor section and to the second compressor section in parallel operation.
An aspect relates to a parallel/series compressor switching system and method.
An aspect relates to a gas processing and management of different operating modes.
The foregoing and other features of construction and operation will be more readily understood and fully appreciated from the following detailed disclosure, taken in conjunction with accompanying drawings.
Some of the embodiments will be described in detail, with reference to the following figures, wherein like designations denote like members, wherein:
A detailed description of the hereinafter described embodiments of the disclosed apparatus, method, and system are presented herein by way of exemplification and not limitation with reference to the Figures. Although certain embodiments are shown and described in detail, it should be understood that various changes and modifications may be made without departing from the scope of the appended claims. The scope of the present disclosure will in no way be limited to the number of constituting components, the materials thereof, the shapes thereof, the relative arrangement thereof, etc., and are disclosed simply as an example of embodiments of the present disclosure.
As a preface to the detailed description, it should be noted that, as used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents, unless the context clearly dictates otherwise.
Current methods and systems for ethane recovery and ethane rejection require different modes of operation (i.e. recovery mode and rejection mode). The recovery mode currently uses a two stage compressor that receives the natural gas for compression and recovery of ethane from the natural gas stream, while the rejection mode uses a different type of compressor, such as a single stage compressor that receives the natural gas for compression and rejection or non-recovery of ethane gas. Switching between operating modes (i.e. between recovery and reject) requires either two independent compressors or significant modifications to a single existing compressor in the system. The modifications of a single compressor system are time consuming and expensive, typically requiring a service engineer to tear down the machine and change several components. Thus, a need exists for switching between operating modes by avoiding significant modifications to existing compressors.
In the first operating mode of system 100, the first valve 21 may be in a closed position, such that the natural gas flows from the inlet 5 to the first compressor section 31 via line 12. The first compressor section 31 may compress the natural gas stream, for example, as a first stage of compression. Further, embodiments of the third valve 23 may be in a closed position, such that the compressed stream flows from first compressor section 31 via line 12 and into line 13, which may connect lines 11 and 12. For example, the third valve 22 may be positioned along line 13, and may be positioned downstream of the first compressor section 31 and upstream of the second compressor section 32. The compressed stream may flow through line 13 and then to the second compressor section 32 via a portion of line 11. The second compressor section 32 may further compress the natural gas stream, for example, as a second stage of compression. The further compressed stream may exit via outlet 6 for further processing, such as a recovery of ethane. The configuration of system 100 results in a low flow, high pressure ratio for better recovery of ethane from the stream leaving outlet 6. Furthermore, the recovery mode may be achieved without modifying the compressor sections 31, 32 of a compressor unit. Embodiments of the system 100 representing a recovery mode may include the first compressor section 31 and the second compressor section 32 in a series operation. Embodiments of lines 11, 12, 13 may be a pipe, a line, a connection, a fluidic connection, and the like.
Accordingly, embodiments of compressor 200 may switch between operating modes (e.g. first operating mode and second operating mode) by controlling one or more valves 21, 22, 23. In an exemplary embodiment, the compressor 200 may switch between an ethane recovery mode, as shown in system 100, to an ethane rejection mode, as shown in system 101, by controlling one or more valves 21, 22, 23. Opening and closing valves 21, 22, 23 as described above is significantly less intensive than requiring an existing compressor to be disassembled for replacement of key components of the compressor. Other operating modes may be utilized using the compressor 200 consistent with systems 100, 101. For example, other gases may be rejected and recovered using the compressor 200 in view of systems 100, 101.
Referring to
While this disclosure has been described in conjunction with the specific embodiments outlined above, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, the preferred embodiments of the present disclosure as set forth above are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention, as required by the following claims. The claims provide the scope of the coverage of the invention and should not be limited to the specific examples provided herein.
This application claims priority to and the benefit of U.S. Provisional Application No. 62/491,729, filed Apr. 28, 2017, and entitled “Gas Processing and Management System for Switching Between Operating Modes,” the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62491729 | Apr 2017 | US |