In various well applications, a wellbore is drilled into a hydrocarbon bearing reservoir and then a pumping system may be deployed downhole. The pumping system is operated to pump oil and/or other fluids to the surface for collection. The pumping system may comprise an electric submersible pumping system having a submersible pump powered by a submersible electric motor. Thrust from the submersible pump is resisted by a thrust bearing working in cooperation with a thrust runner. In some applications, excess gas builds up between the thrust bearing and the thrust runner. The excess gas may cause wear and sometimes failure of the thrust bearing.
In general, the present disclosure provides a system and method for removing gas from a gas-sensitive region, e.g. from a thrust bearing section, in an electric submersible pumping system. A gas purging system is integrated into the electric submersible pumping system. During operation of the electric submersible pumping system, the gas purging system also is operated to move gas away from the gas-sensitive region and to a collection region or other appropriate region. In some embodiments, the gas which accumulates in a collection region may be discharged to a region external of the electric submersible pumping system.
Certain embodiments will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements. It should be understood, however, that the accompanying figures illustrate various implementations described herein and are not meant to limit the scope of various technologies described herein, and:
In the following description, numerous details are set forth to provide an understanding of some illustrative embodiments of the present disclosure. However, it will be understood by those of ordinary skill in the art that the system and/or methodology may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The disclosure herein generally relates to a system and method for removing gas from a region within an electric submersible pumping system. For example, gas may be removed from a thrust bearing section of the pumping system. A gas purging system may be integrated into the electric submersible pumping system to effectively remove gas from the region, e.g. thrust bearing section, when the electric submersible pumping system is in a horizontal orientation or various other orientations. For example, the gas purging system works well for removing gas from the thrust bearing section of a horizontal electric submersible pumping system disposed in a lateral wellbore.
During operation of the electric submersible pumping system, a submersible pump is rotated by a submersible motor via a shaft. According to an embodiment, the gas purging system also is operated via rotation of the shaft to move gas away from the thrust bearing section and to a collection region or other suitable region. The gas purging system may comprise one or more features which operate to remove gas from the thrust bearing section and to transfer the gas to the collection region, e.g. to a sump chamber. In some embodiments, gas which accumulates in the collection region may be discharged to a region external of the electric submersible pumping system.
According to an embodiment, an electric submersible pumping system comprises a thrust bearing section equipped with hydrodynamic thrust bearings which carry thrust generated by the submersible pump. In non-horizontal applications, the thrust bearings also may carry the weight of pumping system components. A thrust runner is attached to a shaft and rides on a film of motor oil separating the thrust runner from the thrust bearing. Gas liberated from the motor oil tends to become trapped at a radially inward region between the thrust bearing and the shaft as rotation of the shaft and thrust runner tends to centrifuge the gas against the shaft. The layer of trapped gas may grow until it detrimentally interrupts the fluid film between the thrust runner and the thrust bearing and may ultimately cause thrust bearing damage or failure. It should be noted the gas may not be entirely liberated from the motor oil and may exist in a mixed fluid state, e.g. a gassy oil. However, the gas in such gassy oil may be sufficient to cause damage to or failure of the affected thrust bearing.
The thrust bearing section may be located at various positions along the electric submersible pumping system. For example, the thrust bearing section (or thrust bearing sections) may be positioned in the submersible pump, submersible motor, or motor protector. In various embodiments, the thrust bearing section is positioned in a motor protector but the motor protector may have a variety of instructions. Some motor protectors utilize a shaft seal module with a thrust bearing section. The shaft seal module may have limited communication with the submersible motor and this can limit the natural capability of the system to remove gas. However, the gas purging system described herein is highly effective at removing gas from thrust bearing sections located in shaft seal modules or located in other types of protectors or submersible pumping system components.
Depending on the application, the gas purging system may comprise a variety of pumping features which effectively remove gas, e.g. gassy motor oil, from the thrust bearing section. By way of example, the gas purging system may comprise pumping features which facilitate removal of gas following centrifugal separation of gas from motor oil via rotation of the shaft and thrust runner. Gas removal may involve venting or pumping of the gas from various gas collection regions adjacent the thrust runner.
The pumping features may comprise a helical groove formed, e.g. milled, along the shaft or other pumping features disposed along the shaft. The gas may be pumped to a collection region, such as a bubble sump chamber located at a position separated from the thrust bearing section. Some embodiments may further utilize gravity separation of gas from the oil in the sump chamber. Baffles may be used to enhance the gravity separation. Vanes, blades, or other separation features also may be used to help separate gas from the motor oil for subsequent removal. In some embodiments, flow passages may be arranged to effectively enable pumping of gas away from the thrust bearing section and to simultaneously move motor oil toward the thrust bearing section. Gas collected in the sump chamber may be routed to a relief valve via passageways oriented to vent gas from the electric submersible pumping system.
Referring generally to
The thrust section 28 may be contained within a motor protector 30 or within another component of electric submersible pumping system 22. By way of example, the motor protector 30 may comprise a compensator 32 and a shaft seal module 34 although other types of motor protectors 30 may be utilized. In some embodiments, the motor protector 30 or components of motor protector 30, e.g. compensator 32, may be located on an opposite end of the submersible motor 26.
The submersible motor 26 is powered via electric power supplied through a power cable 35. During operation of electric submersible pumping system 22, the submersible motor 26 rotates a shaft which powers the submersible pump 24. Operation of submersible pump 24 causes a well fluid, e.g. oil, to be drawn into pumping system 22 through a pump intake 36. It should be noted the motor oil within submersible motor 26, motor protector 30, and thrust section 28 is separated from the well fluid via features of motor protector 30.
According to an embodiment, the electric submersible pumping system 22 is deployed downhole into a well 38 having a lateral wellbore section 40. In the example illustrated, the lateral wellbore section 40 is generally horizontal and the electric submersible pumping system 22 is utilized as a horizontal system within wellbore section 40. However, the submersible pumping system 22 also may be used in generally vertical wellbore sections or other types of boreholes. The electric submersible pumping system 22 is deployed downhole via a conveyance 42, e.g. production tubing or coiled tubing, which is coupled with the pumping system 22 via a connector 44. It should be noted the submersible pumping system 22 may be part of various types of well strings 45 deployed downhole.
In production operations, well fluid flows from a surrounding formation 46, through perforations 48, and into wellbore section 40. The well fluid flows along an annulus 50 between the electric submersible pumping system 22 and a surrounding wellbore wall 52 until entering the pumping system 22 through pump intake 36. The wellbore wall 52 may be an open hole wellbore wall or a wall formed by a casing 54.
Referring generally to
In the illustrated example, the thrust bearing section 28 comprises a thrust runner 58 which works in cooperation with at least one thrust bearing, such as a down thrust bearing 60 and an up thrust bearing 62. By way of example, the thrust runner 58 may be mounted to a shaft 64 rotationally mounted within a shaft tube 66. The shaft 64 may be part of a multi-segment shaft by which submersible motor 26 powers submersible pump 24.
During operation of submersible pump 24, the thrust of the submersible pump 24 is transferred through shaft 64 and countered via thrust bearing section 28. The thrust runner 58 rotates with shaft 64 and is forced axially against thrust bearing 60 to counter down thrust or against thrust bearing 62 to counter up thrust. A motor oil 68 may move between submersible motor 26 and thrust bearing section 28 via, for example, a flow passage 70 extending through a bulkhead 72. The bulkhead 72 as well as thrust bearing section 28 may be disposed within sections of an outer housing 74. A small gap 76 may be disposed between thrust runner 58 and the surrounding outer housing 74 to enable rotation of thrust runner 58 within outer housing 74.
During rotation of thrust runner 58, centrifugal separation of a gas 78 from motor oil 68 may occur which causes the gas 78 to accumulate at a radially inward region 80. As illustrated, the radially inward region 80 may occur along shaft 64 proximate thrust runner 58 and corresponding thrust bearing 60. As explained in greater detail below, the gas 78 may be vented via gas purging system 56 so as to ensure a suitable film of the motor oil 68 remains between thrust runner 58 and the corresponding thrust bearing(s) 60/62.
It should be noted the gas 78 may be contained within a gassy oil portion of the motor oil 68. For example, the centrifugal action of thrust runner 58 may cause formation of a lighter weight, mixed ratio oil containing gas 78. The lighter weight oil containing gas 78 moves to radially inward region 80 while the heavier motor oil 68 (containing no gas or reduced gas) moves radially outward relative to region 80. The gas purging system 56 is able to remove gas 78 by removing the lighter weight mixed ratio oil from radially inward region 80. The centrifugal action results when thrust runner 58 rotates relative to stationary thrust bearings 60/62 which may be rotationally fixed with respect to outer housing 74 via a variety of mounting structures 82.
According to the embodiment illustrated in
By way of further example, the groove 86 may be a helical groove milled or otherwise formed along an exterior of shaft 64 so as to create the desired gas pumping action during rotation of shaft 64. Effectively, the helical groove 86 works as a screw pump which moves the gas 78 (e.g. gas 78 contained in gassy oil) along the shaft 64 to sump chamber 88. In some embodiments, the groove 86 may extend at least partially through thrust runner 58 and along an exterior surface of shaft 64 or along the interior of shaft 64. Various gaps may be formed along rings, radial bearings, and other features disposed along shaft 64 to ensure the flow of gas 78 from the desired region, e.g. radially inward region 80, to sump chamber 88.
The sump chamber 88 of gas purging system 56 may be positioned to receive the gas 78 from pumping feature 84 via a diffuser 90, e.g. a radial opening or openings 92, formed through shaft tube 66. The sump chamber 88 may be formed between shaft tube 66 and a surrounding section of outer housing 74. In some embodiments, the diffuser 90 is constructed with radial openings 92 arranged at an angle which positively directs the gas 78 away from the shaft 64. The diffuser 90 also may have vanes or other features attached to the shaft tube 66 which curve from a generally circumferential orientation to a generally radial orientation. Additionally, the diffuser 90 may have helical passages arranged with respect to shaft 64 to change the direction of flow from generally axial to generally radial. In some embodiments, the groove 86 also may be reversed in orientation or combined with other features downstream of diffuser 90 to limit the amount of gas, e.g. bubbles, flowing past the diffuser 90.
In the embodiment illustrated, the gas purging system 56 also comprises a body section 94 disposed between the sump chamber 88 and the thrust runner 58. The body section 94 may comprise a plurality of passages 96 in the form of recirculation passages oriented at a desired angle relative to shaft 64. For example, the recirculation passages 96 may be oriented through body section 94 such that ends of the passages 96 proximate sump chamber 88 are at a radially inward position while ends of the passages 96 proximate thrust bearing section 28 are at a radially outward position as illustrated.
When the electric submersible pumping system 22 is oriented horizontally, heavier motor oil 68 settles downwardly and lighter gas 78 moves upwardly in the sump chamber 88 as illustrated in
Depending on the parameters of a given application, the gas purging system 56 and thrust bearing section 28 may be located adjacent to or within various components of electric submersible pumping system 22 and may comprise various other and/or additional features such as access ports 102 and radial bearing assemblies 104. Referring generally to
By way of example, the at least one baffle 106 may comprise a plurality of baffles 106 having passages 108 therethrough to enable movement of fluid along sump chamber 88 while limiting fluid agitation. By baffling the fluid in sump chamber 88, gas 78 is better able to separate from motor oil 68 for collection along an upper region of the sump chamber 88 as illustrated. It should be noted the embodiment of
The gas purging system 56 also may comprise other features such as a plurality of gas discharge passages 110 routed from the sump chamber 88 to a collection space 112 and then to a relief valve 114. The gas discharge passages 110 and relief valve 114 cooperate to discharge gas from sump chamber 88 to, for example, annulus 50 surrounding the electric submersible pumping system 22. The relief valve 114 may be selected so as to crack or shift to an open flow position when the pressure of gas 78 acting on relief valve 114 reaches a predetermined cracking pressure. In some embodiments, a plurality of relief valves 114 may be positioned to ensure at least one of the relief valves 114 is positioned toward a top side regardless of the orientation of the electric submersible pumping system 22.
According to an embodiment, the gas discharge passages 110 may be routed through a second body section 116 located on an opposite side of sump chamber 88 relative to body section 94. The body section 94 and second body section 116 may be connected by a section of the outer housing 74. Additionally, the size of gas discharge passages 110 may be selected to limit the flow of motor oil 68 therethrough while readily flowing gas 78 to facilitate removal of gas 78 from sump chamber 88.
Referring generally to
In another example, a filter 126 may be positioned within sump chamber 88 proximate gas discharge passages 110 as illustrated in
Referring generally to
Depending on the parameters of a given operation, the gas purging system 56 may be constructed with various arrangements of the features described herein. For example, the pumping feature 84 along shaft 64 may be omitted in some applications and recirculation passages 96 may be used alone (or vice versa). Some embodiments may utilize gravity separation with the aid of baffles 106 while other embodiments may utilize centrifugal agitator 128 to enhance separation of gas 78 from motor oil 68. In some applications, however, a combination of gravity separation and agitation may be used to facilitate separation of gas 78.
The gas purging system 56 also may be employed to remove gas from other gas-sensitive components or regions in addition to or other than thrust chamber section 28, e.g. other regions such as a radial bearing section, a mechanical shaft seal region, and an electrical conductor region. Various types of pumping features 84 also may be employed along shaft 64 to remove gas from radially inward region 80 so as to limit migration of gas 78 into the oil film between thrust runner 58 and the corresponding thrust bearing, e.g. thrust bearing 60. Variations of the gas purging system 56 also may be used in vertical electric submersible pumping systems to, for example, purge gas from beneath the thrust runner 58. In some embodiments, the gas purging system 56 is disposed within motor protector 30 in a manner which directs the gas 78 into a bag, metal bellows chambers, or other gas handling features of the motor protector 30.
Depending on the parameters of a given well operation, the type, size, orientation, and features of electric submersible pumping system 22 may be changed. The thrust bearing section 28 may be positioned in the motor protector 30 or at other locations along the electric submersible pumping system 22. Similarly, the gas purging system 56 may be positioned in the motor protector 30, within other components of pumping system 22, or within a standalone component coupled into the pumping system 22.
The gas separation and fluid movement features and systems may be used in various combinations according to the parameters of a given application. In some applications, for example, the separated gas may be released to a surrounding region rather than flowed into a sump chamber. The groove or other pumping feature formed along the shaft may be used alone or in combination with other passages/features to facilitate movement of gas in an axial direction along the shaft. Similarly, various combinations of recirculation passages, gas discharge passages, and other passages may be arranged in desired orientations to achieve gas separation and/or removal.
Although a few embodiments of the system and methodology have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this disclosure. Accordingly, such modifications are intended to be included within the scope of this disclosure as defined in the claims.
The present document is based on and claims priority to U.S. Provisional Application Ser. No. 62/411,647, filed Oct. 23, 2016, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/057777 | 10/23/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/076000 | 4/26/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2363420 | Howard | Nov 1944 | A |
3384769 | Schaefer | May 1968 | A |
3404924 | Choate | Oct 1968 | A |
3718379 | Williams et al. | Feb 1973 | A |
3867056 | Carle et al. | Feb 1975 | A |
4362020 | Meacher et al. | Dec 1982 | A |
4477235 | Gilmer et al. | Oct 1984 | A |
4792296 | Kobayashi et al. | Dec 1988 | A |
4798476 | Sakatani et al. | Jan 1989 | A |
4805972 | Tanaka et al. | Feb 1989 | A |
5160240 | Wilson | Nov 1992 | A |
5207810 | Sheth | May 1993 | A |
6246136 | Ichiyama | Jun 2001 | B1 |
6345968 | Shupe | Feb 2002 | B1 |
6361214 | Ichiyama | Mar 2002 | B1 |
6524006 | Lee | Feb 2003 | B1 |
6929064 | Susman | Aug 2005 | B1 |
7819644 | Eber et al. | Oct 2010 | B2 |
8016571 | Speer et al. | Sep 2011 | B2 |
8684679 | Tetzlaff et al. | Apr 2014 | B2 |
8807966 | Du et al. | Aug 2014 | B2 |
8932034 | McKinney et al. | Jan 2015 | B2 |
20010001269 | Asai | May 2001 | A1 |
20050087343 | Du | Apr 2005 | A1 |
20050109515 | Watson et al. | May 2005 | A1 |
20060204359 | Semple et al. | Sep 2006 | A1 |
20090010773 | Parmeter et al. | Jan 2009 | A1 |
20100258306 | Camilleri | Oct 2010 | A1 |
20100321823 | Oe et al. | Dec 2010 | A1 |
20120257998 | Parmeter et al. | Oct 2012 | A1 |
20120263610 | Tetzlaff | Oct 2012 | A1 |
20140219825 | Santos | Aug 2014 | A1 |
20140307989 | Leuthold | Oct 2014 | A1 |
20150023815 | Tetzlaff et al. | Jan 2015 | A1 |
20150184671 | Parmeter et al. | Jul 2015 | A1 |
20150188384 | Rumbaugh et al. | Jul 2015 | A1 |
20150211527 | St. John et al. | Jul 2015 | A1 |
20160133431 | Hunt et al. | May 2016 | A1 |
20170037861 | Rutter et al. | Feb 2017 | A1 |
20170130730 | Torkildsen | May 2017 | A1 |
20170167498 | Chang et al. | Jun 2017 | A1 |
20170260990 | Pyron | Sep 2017 | A1 |
20180298910 | Watson | Oct 2018 | A1 |
20190271324 | Watson et al. | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
100364407 | Dec 2002 | KR |
2015178887 | Nov 2015 | WO |
2016053588 | Apr 2016 | WO |
Entry |
---|
Office action issued in the U.S. Appl. No. 15/767,152, dated Nov. 5, 2020 (27 pages). |
International Search Report and Written Opinion issued in the PCT Application PCT/US2016/055242, dated Dec. 14, 2016 (15 pages). |
International Preliminary Report on Patentability issued in the PCT Application PCT/US2016/055242, dated Apr. 17, 2018 (11 pages). |
International Search Report and Written Opinion issued in the PCT Application PCT/US2017/057777, dated Feb. 7, 2018 (18 pages). |
International Preliminary Report on Patentability issued in the PCT Application PCT/US2017/057777, dated Apr. 23, 2019 (14 pages). |
Number | Date | Country | |
---|---|---|---|
20190271324 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62411647 | Oct 2016 | US |