1. Field of the Invention
The present invention relates to a bag provided with a gas filling compartment for enhancing the shape retention and autonomy of the bag and protecting the contents packaged from shock or the like and more particularly to a method for sealing a gas into the gas filling compartment and further to a packaging method comprising for bag having a gas filling compartment that includes a process for sealing a gas into a gas filling compartment.
2. Description of the Related Art
A self-standing bag (standing pouch) is a bag that exhibits enhanced self-standing properties, innovations having been made in the shape of the bottom surface or the shapes of the bottom surface and the side surfaces thereof. Bottom-gusseted type self-standing bags manufactured such that another folded film (bottom member) is sandwiched in the bottom part of the front and back films (trunk member), and the two lateral side edge parts and bottom edge part are heat-sealed, are widely used. Self-standing bag products that are filled with contents and have the bag mouth sealed can be used in displays or on tables, and the use thereof as a resource-conserving packaging material replacing rigid containers is expanding.
With these bottom-gusseted type self-standing bags; however, when they are large in size or have a spout or the like attached at the bag mouth part, the bag will be too flexible, and problems will arise. The upper part thereof bends over when the bag is displayed or used on a table, the appearance thereof deteriorates, or the self-standing properties thereof are lost so that it topples over. Other problems are that it will be difficult to pour contents from the self-standing bag, because the bag readily bends over, and the bag will be difficult to hold. As to the latter problem, the same thing can be said about flat bags and the like in general.
For such reasons, in Japanese Design Registration Nos. 1247027 and 1247514, for example, an unbonded part is formed in the bag outside of the contents storing section, or, more specifically, an unbonded part is formed (so as to be a gas filling compartment or air bag) in the lateral side edge sealed portion, a gas is sealed therein, and the shape retention of the bag, and handling properties when the seal is opened, are enhanced.
Meanwhile, bags comprising an inner bag and an outer bag, having a gas sealed between the inner bag and the outer bag (gas filling compartment) to protect the packaged contents accommodated inside the inner bag from shock or the like, are described in Japanese Patent Application Laid-Open (Kokai) 64-84869, 2-98563 and 9-132213 and also in Japanese Utility Model Application Laid-Open (Kokai) No. 8-1398.
However, the methods for sealing gas into the gas filling compartment which are disclosed in the related art cited above are not suitable for automation, and it has not been possible to adopt such as a part of an automated packaging operation process wherein a commonly known automated packaging apparatus such as a rotary type packaging apparatus is used.
Accordingly, it is an object of the present invention, which is devised in view of such problems as these, to make it possible, in packaging contents to be packaged using a bag with a gas filling compartment (or with an air bag), to automate both the seal-in process for sealing gas into gas filling compartments and the overall packaging process including such a seal-in process.
The above object is accomplished by unique steps of the present invention for a method that seals gas in a bag having a gas filling compartment; and in the present invention;
In the above method of the present invention, it is preferable that sealing of the means for introducing gas be effected by sealing the both surfaces of the bag at the location of the means for introducing gas. In cases that the means for introducing gas is formed in the vicinity of the bag mouth of the bag, when the bag mouth is sealed to be closed from both surfaces of the bag, the means for introducing gas can be sealed together therewith and the gas is sealed inside the gas filling compartment, and preferably that should be done in that way.
In addition, in the present invention, the gas filling compartment is formed between the films that make the front and back surfaces in the sealed portions at the lateral side edges of the bag (that form an unbonded part having a closed contour inside the sealed portions); alternatively, when the films that make the front and back surfaces of the bag are laminated films, the gas filling compartment is formed in the interior of at least one pair of laminated films (that form an unbonded part having a closed contour between the laminated films). In such cases, it is preferable that the gas filling compartment be formed so as to be oriented downward from the vicinity of the upper edge of the lateral side edge sealed portion and that the means for introducing gas be formed in the vicinity of the upper edge of the gas filling compartment, so that positions downward from the means for introducing gas are held by the cut-off gripper, cutting off the flow of gas between the means for introducing gas and the inside of the gas filling compartment, and so that when the bag mouth is sealed from both surfaces of the bag, the means for introducing gas is sealed together therewith, thus sealing the gas inside the gas filling compartment of the bag.
In the present invention, the above-described gas seal-in method can be used to a spout-equipped bag in which a spout is inserted and sealed in the bag mouth of a bag that has a gas filling compartment. When the present invention is used to such a spout-equipped bag, it is preferable that the gas filling compartment extend downward from the vicinity of the upper edges of the lateral side edge sealed portions, and the means for introducing gas be formed in the vicinity of the upper edge of the gas filling compartment; and it is also preferable that after holding the positions downward from the means for introducing gas with a cut-off gripper and thus cutting off the flow of gas between the means for introducing gas and the inside of the gas filling compartment, sealing be done for the bag mouth from both surfaces of the bag, so that sealing be performed both between the films at the bag mouth and between the films at the bag mouth and the spout, and at which time the means for introducing gas be sealed together therewith, thus sealing the gas inside the gas filling compartment.
The above-described object is further accomplished by unique steps of the present invention for a packaging method in which bags, held at both lateral side edges thereof by grippers and suspended, are conveyed continuously or intermittently; and, during the course of the bag conveyance, various packaging processes including bag mouth opening, filling the bag with contents to be packaged, and bag mouth sealing are successively performed; and in the present invention,
In the above-described packaging method of the present invention, for the structure and gas seal-in method for a specific bag with a gas filling compartment, the structure and seal-in method already described can be used.
In addition, the above-described packaging method of the present invention can be used for a spout-equipped bag. When the packaging method of the present invention is used for a spout-equipped bag as well, for the structure and gas seal-in method for a specific bag with a gas filling compartment, the structure and seal-in method already described can be used.
As seen from the above, by using the gas seal-in method of the present invention, both the seal-in process for sealing gas into gas filling compartments and the overall packaging process comprising that seal-in process can be automated; and, when packaging contents to be packaged using a bag with a gas filling compartment, in the present invention it is possible to perform packaging operations efficiently, using a commonly known automatic packaging apparatus such as a rotary type packaging apparatus, for example.
FIGS. 2(a) through 2(d) are side elevational views showing the process order in a gas seal-in method and packaging method using the bag of
FIGS. 3(e) through 3(g) show the process order after the step of
FIGS. 4(a) through 4(c) are schematic front elevational views of the bag with a gas filling compartment when, in the gas seal-in method and packaging method of the present invention, the bag is at, respectively, the contents filling process position, the gas filling process position, and the bag mouth sealing process position;
FIGS. 8(a) through 8(d) are side elevational views showing the process order in the gas seal-in method and packaging method that uses a spout-equipped bag;
FIGS. 9(e) through 9(g) show the process order after the step of
FIGS. 10(h) and 10(i) show the process order after the step of
FIGS. 11(a) through 11(c) are schematic front elevational views of the spout-equipped bag when, in the gas seal-in method and packaging method of the present invention, the bag is at, respectively, the temporary sealing process position, the primary main sealing process position, and the secondary main sealing process position;
FIGS. 13(a) through 13(d) are side elevational views showing the process order in the gas seal-in method and packaging method of the present invention using the bag shown in FIGS. 12(a) through 12(c);
FIGS. 14(e) through 14(g) show the process order after the step of
FIGS. 15(a) through 15(c) are schematic front elevational views of the bag with a gas filling compartment when, in the gas seal-in method and packaging method of the present invention, the bag is at, respectively, the contents filling process position, the gas filling process position, and the bag mouth sealing process position; and
The present invention is now described below specifically with reference to
A bag with a gas filling compartment I of the present invention is shown in
The gas filling compartment (air bag) 5 is a place left unsealed, without having pressure applied thereto when the front and back side films are heat-sealed, having a closed outline extending narrowly downward from the vicinity of the upper edge of the sealed portion 2, with a circular arc-shaped cut-in (a means for introducing a gas) 6 formed in the film surface (on the front side in
Next, the method for manufacturing a bag with a gas filling compartment (packaging method) with a rotary type packaging apparatus, using the bag with a gas filling compartment 1, will be described with reference to FIGS. 2(a) to 5.
In a rotary type packaging apparatus, in general, a plurality of pairs of grippers is provided at equal intervals about the periphery of an intermittently turning table, bags are supplied to the grippers, the bags are held suspended, gripped by the grippers at the two lateral side edges thereof, and conveyed intermittently, and such packaging operations as bag mouth opening, packaging contents filling, and bag mouth sealing are performed successively at each of a number of stop positions. Additionally, when bag with a gas filling compartment (or with an air bag) is used, and a gas is sealed inside the gas filling compartments thereof, a gas filling process and a process for closing (sealing) the above-described cut-in will also be necessary.
For that reason, when applying the seal-in method and packaging method of the present invention to the above-described bag with 1 a gas filling compartment, in addition to deploying gas filling means at the stop position where the above-described gas filling process is effected, auxiliary grippers (cut-off grippers) are provided for gripping the bag 1 at prescribed locations from both sides, one pair each in correspondence with each pair of grippers. This is the main point of difference between the rotary type packaging apparatus used in the present invention (see
The auxiliary grippers 7, which are provided horizontally, in the length direction, at positions directly above the grippers 8 on one side, are capable of opening and closing so as to be able to hold the bag 1 from both sides.
The gas filling means comprise a gas (air) blow-in nozzle 11 and a backing member 12, described further below.
The packaging method is performed in the following manner using the rotary type packaging apparatus shown in
(1) At stop position I (bag supply process position), a bag 1 is supplied to grippers 8 and 8 from a conveyor magazine-type bag supplying mechanism 13.
(2) At stop position II (print process position), the surface of the bag is printed by a printer (only the head unit 14 is shown).
(3) At stop position III (mouth opening process position), the bag mouth is opened by a mouth opening mechanism (indicated only by a suction plate 15 and a mouth opening head 16).
(4) At stop position IV (filling process position), the filling of a liquid (contents 9 to be packaged) is performed by a filling mechanism (indicated only by a nozzle unit 17).
(5) At stop position V (gas filling process position), as shown in
As seen from
Then, as shown in
Last of all, as shown in
(6) At stop position VI (first sealing process position), a first sealing mechanism (indicated only by a pair of hot plates 23) for sealing the bag mouth is provided. When the bag 1 stops at the first sealing process position, as shown in
Then, as shown in
(7) At stop position VII (second sealing process position), a second sealing mechanism (indicated only by a pair of hot plates 25) for sealing the bag mouth is provided, and a second sealing process is performed which pressure-holds the sealed portion 24 again with the hot plates 25, combining the sealing of the bag mouth and the sealing of the cut-in 6, as in the first sealing process.
(8) At stop position VIII (seal cooling and discharge process position), a seal cooling mechanism (indicated only by a pair of cooling plates 26) is provided for cooling the bag mouth sealed portions 24. The bag surfaces are pressure-held by the cooling plates 26 and cooled, the grippers 8 and 8 open during that cooling, then the cooling plates 26 open, and the bag 1 (the bag with a gas filling compartment product) is discharged by a chute 27 to the outside of the apparatus.
The cut-in 6 formed in the film surface of the bag 1 is, moreover, a cut line which itself has no planar size. Ordinarily, this is in a substantially closed condition, but opens due to air (gas) pressure when air (gas) is being blown in. The bag surfaces are held by the auxiliary grippers 7 and the flow of gas between the cut-in 6 and the inside of the gas filling compartment 5 is cut off, after which, when the blow-in nozzle 11 has moved back, the cut-in 6 returns to the closed condition. Then, when the bag mouth has been heat-sealed, the film 21 and the film 22 are sealed together; however, at that time, at the location of the cut-in 6, because the film 21 is sealed with the film 22 while the cut-in 6 is in the closed condition, the result is that, in terms of outward appearance, the condition is tantamount to one wherein there is substantially no cut-in 6.
A hole can be formed in place of the cut-in 6 as a means for introducing a gas; however, as described in Japanese Patent Application Laid-Open (Kokai) No. 1-227803, when a hole is made and used, the sealant material (film) adheres to the sealing hot plates, and overruns from the hole to the periphery; accordingly, a cut-in that can prevent such a problem is preferable.
A bag with a gas filling compartment 28 (bottom-gusseted type self-standing bag) in another embodiment of the present invention is shown in
The unbonded part 5 (gas filling compartment) formed in the bag 28 is formed in the sealed portions 2 and 3 at the two lateral side edges and in the sealed portion 4 extended further downward, forming overall a U-shaped closed contour. This gas filling compartment 5 is formed between the films 21 and 22 of the front and back surfaces in the sealed portions 2 and 3, and, in the sealed portion 4, is formed between the one film 21 of the front and back surface films (the front side film in
In the film surface in the vicinity of the upper edge of the gas filling compartment 5, a cross-shaped cut-in 6 is formed which causes the inside of the gas filling compartment 5 and the outside of the bag to communicate. In this embodiment, moreover, a cut-in 6 is formed at both tip ends of the U shape, but may be formed at only one tip end.
For this bag with a gas filling compartment 28 also, the same gas seal-in method and packaging method as are performed on the bag 1 can be applied. However, if two cut-ins 6 are formed, an auxiliary gripper, blow-in nozzle, and backing member are required for each cut-in.
In both the bag 1 and the bag 28, moreover, the gas filling compartment is formed between the front and back surface films themselves and between the front and back surface films and the bottom part film; however, in cases where the front and back surface films are laminated films, a gas filling compartment having a closed contour extending in the longitudinal direction can be formed in the interior of at least one of the pairs of laminated films. That gas filling compartment can be formed, when films are laminated to form front and back surface laminated films, by leaving them unbonded in a prescribed contour.
Next, the method (packaging method) for manufacturing a spout-equipped bag product with, for example, a rotary type packaging apparatus by way of using a bag that is provided with a gas filling compartment and with a spout which is inserted into and sealed in the bag mouth of the bag (such bag being called “spout-equipped bag”) will be described with reference to FIGS. 8(a) to
The spout-equipped bag 31, shown in
The rotary type packaging apparatus used here, as shown in FIGS. 8(a) to 8(d) and FIGS. 11(a) to 11(c), has a plurality of spout holding members 39 deployed at equal intervals about the periphery of a turning table that turns intermittently. The spout holding members 39 are bifurcated members, which are inserted between upper and lower flanges 40 and 41 formed in the spout 32 to hold the spout 32. In this rotary type packaging apparatus, the spouts 32 held by the spout holding members 39 are conveyed intermittently, and, at each stop position, packaging processes, such as the bag 33 supply and temporary sealing with the spout, the main sealing (primary and secondary) between the bag 33 and the spout 32, the filling with the contents to be packaged (liquid substance), and capping the spout, are successively performed. As in the rotary type packaging apparatus shown in
The auxiliary grippers 42 are provided at positions diagonally downward from the spout holding members 39 (positions directly below the sealing hot plates described subsequently), with the length direction thereof made horizontal, and are capable of opening and closing so that they can hold the bag 33 from both sides.
The gas filling means, moreover, comprise the same blow-in nozzle 11 and backing member 12 as shown in, for instance, FIGS. 2(a) through 2(d).
The packaging method using this rotary type packaging apparatus is effected as follows:
(1) First, the spout 32 is supplied to a spout holding member 39, and held vertical.
(2) At the temporary sealing process position, a bag feeding mechanism for supplying the bags 33 and a temporary sealing mechanism for temporarily sealing the spout 32 and the bag 33 are provided. By the bag feeding mechanism, a bag with a gas filling compartment 33 is supplied from below to the spout 32, a bonding part 32a of the spout 32 enters inside the bag mouth of the bag 33, and, as shown in
(3) After temporary sealing, the spout-equipped bag 31 is turned and conveyed, and stops at the primary main sealing process position. At this position, as shown in
In the primary main sealing process, as shown in
(4) Next, the spout-equipped bag 31 is turned and conveyed, and stops at the secondary main sealing process position. At this position, as shown in
Then, as shown in
(5) At the packaged contents filling process position, as shown in
FIGS. 12(a) through 12(c) show a bag with a gas filling compartment 51 in yet another embodiment of the present invention.
The bag 51 comprises an inner bag 52 and an outer bag 53 having substantially the same width. The bag mouth A of the inner bag 52 opens, and, at the upper edge B of the bag 51, the films 54 and 55 of the inner bag 52 and the films 56 and 57 of the outer bag 53 (i.e. the adjacent films 54 and 56, and the adjacent films 55 and 57) are sealed together, one side at a time. The sealed portions 58 and 59 are indicated by crosshatching in
By these sealed portions 58, 59, and 61 to 63, gas filling compartments 64 and 65 are configured, between the film 54 of the inner bag 52 and the film 56 of the outer bag 53, and between the film 55 of the inner bag 52 and the film 57 of the outer bag 53. In
In the vicinity of the upper edge side corner of the bag 51, a supplementary sealed portion 66 wherein the film 54 of the inner bag 52 and the film 56 of the outer bag 53 are sealed together is formed, in like manner as the sealed portion 58, with a prescribed length in the longitudinal direction, connecting to the sealed portion 58, and, in the vicinity of the upper edge side corner on the opposite side, a supplementary sealed portion 67 wherein the film 55 of the inner bag 52 and the film 57 of the outer bag 53 are sealed together is formed, in like manner as the sealed portion 59, in the longitudinal direction, connecting to the sealed portion 59. The reason why the expressions supplementary sealed portions 66 and 67 are used here is that, as will be described subsequently, these sealed portions are sealed portions which are necessary, in a supplementary way, for the sealing in of the gas.
In the vicinities which are more toward the corners than the sealed portions 58 and 59, circular arc-shaped cut-ins 68 and 69 are formed, respectively, in the surfaces of the films 56 and 57 of the outer bag 53, for gas blow-in.
Next, the method (packaging method) for manufacturing bag with a gas filling compartment products by a rotary type packaging apparatus, using the bag with a gas filling compartment 51, is described with reference to FIGS. 13(a) through 16.
In this rotary type packaging apparatus, moreover, as in the rotary type packaging apparatus shown in
The auxiliary grippers 71 and 72, as shown in
With this packaging method, up to the filling of the contents to be packaged, the same operations as for the bag 1 are performed. The gas seal-in process (comprising a gas filling process and a cut-in sealing process) from the packaged contents filling process on is conducted as follows:
(1) After the filling of the contents to be packaged (see
(2) As shown in
(3) As shown in
(4) As seen from
(5) Then the table of the rotary type packaging apparatus turns, and the grippers 73 and 74 gripping the two edges of the bag 51 stop at the next stop position (the bag mouth sealing process position). At this stop position, a bag mouth sealing process is conducted in conjunction with a cut-in sealing process. At this stop position, as shown in
(6) As shown in
Number | Date | Country | Kind |
---|---|---|---|
2005-310544 | Oct 2005 | JP | national |