The present invention relates to a sensor, and more particularly to a sensor utilizing surface-acoustic-wave array oscillating circuits to sense at least one low concentration object at the same time and method thereof.
Of various conventional sensors, such as metal-oxide-semiconductor sensors (MOS), conducting-polymer sensors (CPS), metal-oxide field-effect transistors (MOSFET), fluorescent odor sensors, ion-mobility spectrometry (IMS), and so on, each has its respective constraints. For example, the metal-oxide-semiconductor sensors (MOS) must be operated in a high-temperature environment, and they possess poor capability to recognize heteropolar compounds and bad selectivity; the conducting-polymer sensors (CPS) are easily perturbed by humidity. A need therefore arises to develop a sensor that has several advantages such as operating near 23° C., great sensibility, modest cost, and so on. The surface-acoustic-wave device is an appropriate choice to fulfill all these requirements.
Because the propagation characteristics of a surface-acoustic wave are easily influenced by external environmental factors, a surface-acoustic-wave device is appropriate to serve as a sensing device.
A single-sensor in prior art cannot, however, measure multiple sensed objects simultaneously: the single-sensor can measure only one specific object. The domain and scope of use of a single sensor are therefore generally limited.
Another conventional transducer is an inter-digital transducer (IDT). Such an inter-digital transducer has issues of width, length, and electrode spacing specified by the material of the inter-digital transducer to create an inadequate frequency response of the device.
In addition, a conventional surface-acoustic-wave array sensor has the properties of electrical consumption and easily causing a mutual interference between sensing devices. In particular, a portable device has arranged into it a reduced-volume conventional matrix-array surface-acoustic-wave sensor, which can generate an error action due to interference between the sensing devices.
A need therefore arises to develop a novel and advanced sensor that is convenient to carry and that can sense multiple objects concurrently in a low concentration environment. Otherwise, the sensor requires advantages, such as modest cost, great sensibility and accuracy.
In view of the foregoing, the present invention provides a discontinuous-type surface-acoustic-wave array oscillating-circuit sensor. Integrating the characteristics of a piezoelectric material, surface acoustic wave, a thin film, and external correlation circuits into the senor of the present invention enables the sensor to detect at least one object at a particular time in a low concentration environment.
The first purpose of the present invention is to provide a switching device to construct a discontinuous-type surface-acoustic-wave array oscillating circuit. Connecting the control ends of the switching device to a front end of each external circuit individually, only one sensing device is activated at one time. The power consumption of the sensing device can thus be decreased and the mutual interference between the sensing devices becomes preventable. Otherwise, utilizing a counting register to control the switching frequency and the switching amount of the switching device by monitoring the frequency of the counting register, the switching speed of the switching device is controlled. Finally, the output terminals of the external circuit are connected to a frequency counter and a calculating device to calculate the variation of each sensing device. The characteristics, such as species and quantity of sensing objects, are then obtainable.
The second purpose of the present invention is to provide a discontinuous-type surface-acoustic-wave array oscillating circuit. According to various characteristics of thin films disposed on each surface-acoustic-wave device, the sensor can sense various objects at the same time. Because one of the aforementioned sensing devices without a thin film formed thereon is utilized as a reference to create an initial value for other sensing devices, it can remove the perturbing factors in the environment.
The third purpose of the present invention is to provide an improved frequency response of a device by defining the parameters of the piezoelectric material of the transducer, such as the electrode logarithm, electrode length, electrode width, electrode spacing, and so on.
The fourth purpose of the present invention is to provide a thin film, which is formed from carbon material. Moreover, the thin film has a large surface area, and the large surface area has center holes and micro holes.
To achieve the above purposes, the present invention discloses a gas sensor. The gas sensor comprises an array of surface-acoustic-wave devices that comprises at least one surface-acoustic-wave device. The gas sensor includes a first surface-acoustic-wave device, at least one further surface-acoustic-wave device, and a control device. The first surface-acoustic-wave device comprises a piezoelectric substrate, a pair of transducers and an external circuit. The pair of transducers consists of a first transducer and a second transducer, formed on two sides of the piezoelectric sensor. The first transducer is utilized to generate surface acoustic wave on the piezoelectric substrate, and the external circuit is electrically connected to the pair of the transducers. Moreover, the first surface-acoustic-wave device is utilized to exclude interference of environmental factors. Further, at least one further surface-acoustic-wave device comprises at least one surface-acoustic-wave device and a sensing porous thin film, of which two sides are formed on the pair of the transducers of the first surface-acoustic-wave device. The control device serves as a power switch, and an output terminal of the control device connects to a front end of an external circuit to control only one external circuit in the control device to be activated at any one time. When a sensing object adheres to the sensing porous thin film, a variation of the surface-acoustic wave becomes transferred to the second transducer through the sensing porous thin film. Moreover, the variation of the surface-acoustic wave is transferred to a frequency counter, which comprises an external device. The results of the variation of the frequency of the surface-acoustic wave can be measured by the frequency counter. Quantitative and qualitative analysis of the sensing object are thus obtainable. Furthermore, one characteristic of the present invention is to utilize the control device to switch the power supply of the external circuits so as to transfer signals of the discontinuous-type surface-acoustic-wave device.
To achieve the above purposes, the present invention also discloses a method of sensing an object. The method comprises the following procedures: (a) providing a first surface-acoustic-wave device and at least one further surface-acoustic-wave device, wherein the process thereof includes (i) providing the first surface-acoustic-wave device that includes a piezoelectric substrate and a pair of transducers formed on the piezoelectric substrate, wherein the pair of the transducers consists of a first transducer and a second transducer, and (ii) providing at least one further surface-acoustic-wave device that is formed from a porous thin film on the pair of transducers of the first surface-acoustic-wave device; (b) applying a voltage to the first transducer with an external circuit, wherein the first transducer is utilized to convert the electrical energy to the mechanical energy and to generate surface-acoustic wave on the piezoelectric substrate; (c) controlling only one of the external circuit to output signal at one time by utilizing a control device, wherein an output terminal of the control device is connected to a front end of the external circuit; (d) measuring variance of the surface-acoustic wave transferred by the second transducer; and (e) utilizing an external device to receive signal of electrical energy transferred by the second transducer to calculate information from the thin film.
One advantage of the present invention is to provide a gas sensor, which has various characteristics of a thin film; this thin film is disposed on each surface-acoustic-wave device. The gas sensor can then sense various objects in a low concentration environment at the same time. Upon utilizing a discontinuous-type array, especially, the mutual interference of the devices on a small-volume apparatus becomes preventable. The sensor thereby acquires several advantages, such as small volume, modest cost, small loss of energy, a satisfactory frequency response of the device, and so on.
A detailed description is given in the following embodiments and with reference to the accompanying drawings and claims.
The invention is hereinafter described in greater detail with preferred embodiments of the invention and accompanying illustrations. Nevertheless, it should be recognized that the preferred embodiments of the invention are provided not to limit the invention but to illustrate it. The present invention is implementable in not only the preferred embodiments herein mentioned, but also diverse other embodiments, besides those explicitly described. Further, the scope of the present invention is expressly not limited to any particular embodiments except what are specified in the appended Claims.
One preferred embodiment of the present invention discloses a discontinuous-type surface-acoustic-wave oscillating-circuit array sensor to utilize various characteristics of thin films disposed on each surface-acoustic-wave device to sense various low concentration gases at the same time. Moreover, the sensor can be set into a portable device for convenient carrying and for sensing gas with the varied demands.
First of all, several parameters of an inter-digital transducer (IDT) of this embodiment of the present invention are described below. As used here, these parameters are utilized only to explain this embodiment of the present invention, and not to limit the appended claims of the present invention.
In this embodiment, the piezoelectric substrate 3 is fabricated from 128° YX—LiNbO3, but not limited. In another certain embodiments, the piezoelectric substrate 3 is fabricated from selecting one or more piezoelectric materials including aluminum nitride (AlN), gallium arsenide (GaAS), zinc oxide (ZnO), lead zirconate titanate (PZT), or combinations thereof. In this embodiment, a center frequency of the device is about 99.8 MHz.
Another embodiment of the present invention describes a variation of the frequency of a surface-acoustic-wave device of the sensor of the present invention. An adhered thin film 361 having selectivity and uniqueness is disposed on a sensing region of a surface-acoustic-wave device. When the sensor is exposed to an environment with a target sensing object, an input electrical signal is converted to mechanical wave with a first transducer 381. The mechanical wave is transferred in a delay line. The excited surface wave is physically or chemically adhered to the porous thin film 361 in the sensing region such that a variation of the wave speed is produced by a variation of the mass in the sensing region. Moreover, a second transducer 382 is utilized to convert a signal of mechanical energy to an electrical signal output, and then variations of physical quantity, such as a variation of a center frequency, phase or loss of energy, can be measured with an instrument. The variation of frequency is caused by the specified molecules of the adhered gaseous sample. When a variation of the drift velocity of the wave is received by the second transducer 382, the variation becomes converted to an electrical signal, which is in turn transferred to a universal counter (not shown), and the value of the frequency is shown on a screen of the counter. Moreover, when a reading speed of the universal counter is set as 1 (reading/s), the resolution of the counter can attain 0.01 Hz. A small variance of frequency thus becomes measurable. Further, the electrical signal is transferred to a calculating device (not shown) for qualitative and quantitative analysis. From the foregoing, the sensor of the present invention can be placed in a low concentration environment for sensing.
Materials of the aforementioned porous thin film are selected from polymeric materials or nano-porous materials, but are not limited thereto. The abovementioned polymeric materials comprise poly(N-vinylpyrrolidone) (PNVP), poly(4-vinylphenol) (P4VP), polystyrene (PS), polyvinyl acetate (PVAc), polystyrene-co-maleic-anhydride (PSMA), polyethylene glycols (PEG), polysulfone (PSu), or derivatives thereof, but are not limited thereto. Moreover, the thickness of the final finished thin film is about 0.5˜10 μm.
From the foregoing, the sensor of the present invention is utilized for the control device 34 to switch the power of the external circuit 32 so as to control only one of the external circuits 32 to generate oscillation as output. When one external circuit 32 is activated, the others external circuits 32 do not act, thereby the output signal of the surface-acoustic-wave array device is discontinuous. Mutual interference of all surface-acoustic-wave devices acting at the same time thus becomes prevented. Because only one external circuit 32 acting, the maximum value of the current is only that of the counting register 30 and one surface-acoustic-wave oscillating circuits so that the power consumption is small. Moreover, various porous thin films 361˜369 are disposed on the surface-acoustic-wave array device to sense various sensed objects at the same time. Furthermore, the characteristics of the surface-acoustic-wave device comprise great sensitivity to perturbation by the external environment. The sensor of the present invention can therefore sense concurrently various sensed objects in a low concentration environment, and subject these sensed objects for qualitative or quantitative analysis.
Further, a measuring method of the present invention to utilize the discontinuous-type surface-acoustic-wave array sensor aforementioned is disclosed as follows.
In one embodiment of the present invention, the discontinuous-type surface-acoustic-wave array oscillating-circuit sensor is placed in a test chamber. Then, ammonia vapour is generated with a gas generator for testing gases. The surface of the surface-acoustic-wave sensor is covered with a porous poly(N-vinylpyrrolidone) (PNVP) thin film for measurement.
In another embodiment of the present invention, the discontinuous-type surface-acoustic-wave array oscillating-circuit sensor is placed in an environment containing five varied gases for testing. In this embodiment, the materials of the porous thin film are polymeric materials. Referring to
In another embodiment of the present invention, the discontinuous-type surface-acoustic-wave array oscillating-circuit sensor is placed in various concentration of a gas for testing. Referring to
Although the embodiments of the present invention disclosed herein are at present considered to be preferred embodiments, various changes and modifications can be made without departing from the spirit and scope of the present invention. The scope of the invention is indicated in the appended claims, and all modification that come within the meaning and range of equivalents are intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
098115867 | May 2009 | TW | national |