1. Field of the Invention
This invention relates in general to electric submersible pumps (ESPs) and, in particular, to a gas separator with improved flow path efficiency.
2. Brief Description of Related Art
Electric submersible pump (ESP) assemblies are disposed within wellbores and operate immersed in wellbore fluids. The ESP assemblies generally include a pump portion and a motor portion. Generally, the motor portion is downhole from the pump portion, and a rotatable shaft connects the motor and the pump. The rotatable shaft may be one or more shafts operationally coupled together. The motor rotates the shaft that, in turn, rotates components within the pump to lift fluid through a production tubing string to the surface. The ESP assembly may also include one or more seal sections coupled to the shaft between the motor and pump. In some embodiments, the seal section connects the motor shaft to the pump intake shaft. The seal section provides an area for the expansion of the ESP motor oil volume, equalizes the internal unit pressure with the wellbore annulus pressures, isolates the clean motor oil from wellbore fluids to prevent contamination, and supports the pump shaft thrust load.
In some embodiments, the ESP assembly includes a gas separator positioned between the seal section and the pump section. ESPs are designed to handle liquid and will suffer from head degradation and gas locking in the presence of a high percentage of free gas. The gas separator is installed at the intake of the pump section, between the seal section and the pump section. Wellbore fluid enters the gas separator and passes through the gas separator into the pump intake. The wellbore fluid is rotated within the separator, centrifugally separating heavier wellbore fluid from lighter wellbore fluid. Generally, heavier wellbore fluid corresponds with fluid that has a lower gas content, and lighter wellbore fluid corresponds with fluid having a higher gas content. The gas separator then directs the heavier wellbore fluid to the pump section intake and the lighter wellbore fluid back into the annulus of the casing. The flowpath of the lighter fluid generally must make a sharp right-angle turn to exit the gas separator and flow back into the casing annulus. The sharp right angle turn causes an increase in the fluid pressure where the lighter wellbore fluid must make a rapid change in momentum to exit, the separator. This coincides with a change in momentum from a path moving circularly uphole and radially inward to a path moving normal to the previous circular path. This pressure increase causes a notable increase in the amount of pumping head needed within the separator chamber. Thus, there is a need for a gas separator within an improved fluid flowpath to increase the efficiency of the overall ESP assembly.
These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by preferred embodiments of the present invention that provide an ESP gas flow separator with improved flowpath efficiency.
In accordance with an embodiment of the present invention, a submersible pump assembly is disclosed. The pump assembly includes a rotary primary pump, a motor operationally coupled to the primary pump for driving the pump, a seal assembly between the primary pump and the motor for sealing the motor from the wellbore, and a gas separator between the seal assembly and the primary pump for separating fluid with high gas content from fluid with low gas content. An outlet of the gas separator feeds an intake of the primary pump. A rotating shaft operationally couples the primary pump to the motor, wherein the rotating shaft passes through the seal assembly and the gas separator. The gas separator contains a venting portion for passing gas from the gas separator into a wellbore. A diverter positioned within the venting portion of the gas separator directs heavier fluid into the intake of the primary pump and lighter fluid toward a venting port of the venting portion. Diverter guide vanes are formed in a flowpath of the lighter fluid for aiding in a directional change of momentum.
In accordance with another embodiment of the present invention, a submersible pump assembly is disclosed. The pump assembly includes a rotary primary pump, a motor operationally coupled to the primary pump for driving the pump, a seal assembly between the primary pump and the motor for sealing the motor from wellbore fluid, and a gas separator between the seal assembly and the primary pump for separating wellbore fluid having a higher concentration of gas from wellbore fluid having a lower concentration of gas. An outlet of the gas separator feeds an intake of the primary pump. A rotating shaft operationally couples the primary pump to the motor. The rotating shaft passes through the seal assembly and the gas separator. The gas separator contains a venting portion for passing gas from the gas separator into a wellbore. A diverter is positioned within the venting portion of the gas separator for directing heavier fluid into the intake of the primary pump and lighter fluid toward a venting port of the venting portion. Diverter guide vanes are formed in a flowpath of the lighter fluid for aiding in a directional change of momentum. The diverter is a conical member having an upstream end and a downstream end, wherein the downstream end has an inner diameter substantially equivalent to the outer diameter of the rotating shaft, and the upstream end has an inner diameter that is wider than the diameter of the rotating shaft to define a fluid passageway directing fluid toward the downstream end. The conical member defines fluid openings near the downstream end so that fluid entering the fluid passageway at the upstream end may flow into the fluid openings. The diverter guide vanes are formed within the conical member on trailing edges of the fluid openings and extend partially into the fluid passageway so that the diverter guide vanes may direct fluid into the fluid openings. The diverter guide vanes have a thickness that decreases in a direction from the trailing edge of one of the fluid openings toward an adjacent one of the fluid openings, and each guide vane has a curved inner surface. The gas separator includes a gas separator intake for intaking wellbore fluid from an area proximate to an upstream end of the gas separator, an impeller operationally coupled to the gas separator intake downstream of the gas separator intake so that the impeller may impart rotational inertia to the wellbore fluid entering through the separator intake, and a separation chamber operationally coupled to the impeller so that rotating wellbore fluid may pass from the impeller into the separation chamber. The separation chamber is operationally coupled to the venting portion.
In accordance with yet another embodiment of the present invention, a submersible pump assembly is disclosed. The pump assembly includes a rotary primary pump, a motor operationally coupled to the primary pump for driving the pump, a seal assembly between the primary pump and the motor for sealing the motor from wellbore fluid, and a gas separator between the seal assembly and the primary pump for separating wellbore fluid having a higher gas content from wellbore fluid having a lower gas content. An outlet of the gas separator feeds an intake of the primary pump. A rotating shaft operationally couples the primary pump to the motor, wherein the rotating shaft passes through the seal assembly and the gas separator. The gas separator contains a venting portion for passing gas from the gas separator into a wellbore, a diverter positioned within the venting portion of the gas separator for directing heavier fluid into the intake of the primary pump and lighter fluid toward a venting port of the venting portion, and a slinger positioned within the diverter for impelling fluid through a venting port of the venting portion. Three blades are formed on the slinger, each blade having a blade at least two portions that aid in the movement of wellbore fluid having a higher gas content from the gas separator. The gas separator also includes gas separator intake for intaking wellbore fluid from an area proximate to an upstream end of the gas separator, an impeller operationally coupled to the gas separator intake downstream of the gas separator intake so that the impeller may impart rotational inertia to the wellbore fluid entering through the separator intake, and a separation chamber operationally coupled to the impeller so that rotating wellbore fluid may pass from the impeller into the separation chamber. The separation chamber is operationally coupled to the venting portion.
An advantage of the disclosed embodiments is that they provide a gas separator with improved flowpath efficiency. As a result, the total pumping head required to lift fluid to the surface is reduced. Additional embodiments include a slinger with modified blades that increase the flow rate of high gas content fluid out of the gas separator and into the wellbore, further increasing efficiency.
So that the manner in which the features, advantages and objects of the invention, as well as others which will become apparent, are attained, and can be understood in more detail, more particular description of the invention briefly summarized above may be had by reference to the embodiments thereof which are illustrated in the appended drawings that form a part of this specification. It is to be noted, however, that the drawings illustrate only a preferred embodiment of the invention and are therefore not to be considered limiting of its scope as the invention may admit to other equally effective embodiments.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings which illustrate embodiments of the invention. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and the prime notation, if used, indicates similar elements in alternative embodiments.
In the following discussion, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details. Additionally, for the most part, details concerning ESP operation, construction, and the like have been omitted inasmuch as such details are not considered necessary to obtain a complete understanding of the present invention, and are considered to be within the skills of persons skilled in the relevant art.
The exemplary embodiments of the downhole assembly of the present invention are used in oil and gas wells for producing large volumes of well fluid. As illustrated in
A rotating shaft 25 may extend from motor 15 up through seal section 19, gas separator 21, and ESP 13. Motor 15 may rotate shaft 25 to, in turn, rotate impellers 27 within ESP 13. A person skilled in the art will understand that shaft 25 may comprise multiple shafts configured to rotate in response to rotation of the adjacent upstream coupled shaft. Impellers 27 will generally operate to lift fluid within ESP 13 and move the fluid up production string 23. Impellers 27 perform this function by drawing fluid into a center of each impeller 27 near shaft 25 and accelerating the fluid radially outward. Generally, the fluid accelerated by each impeller 27 will then flow into a diffuser 29 axially above impeller 27. There, the fluid is directed from a radially outward position to a radially inward position adjacent shaft 25 where the fluid is drawn into a center of the next impeller 27.
Referring now to
Referring to
As shown in
Upstream end 53 also defines a fluid passageway 65 between inner diameter 55 of upstream end 53 and the outer diameter of rotating shaft 25. Diverter 49 defines an opening 67 (
As shown in
Referring to
Each blade 75 has a downstream portion 87 from junction 83 to the downstream end of cylindrical body 73. As shown in
In the embodiment of
Accordingly, the disclosed embodiments provide numerous advantages. For example, the disclosed embodiments provide a gas separator having a higher flowrate efficiency. The disclosed embodiments accomplish this by providing guide vanes within the diverter that reduce flow resistance and turbulence by aiding the change in direction of fluid momentum from along the rotating shaft toward an exterior of the gas separator. In addition, the disclosed embodiments provide a slinger that further impels the fluid, increasing the flowrate of separated gas fluid through the venting ports of the gas separator.
It is understood that the present invention may take many forms and embodiments. Accordingly, several variations may be made in the foregoing without departing from the spirit or scope of the invention. Having thus described the present invention by reference to certain of its preferred embodiments, it is noted that the embodiments disclosed are illustrative rather than limiting in nature and that a wide range of variations, modifications, changes, and substitutions are contemplated in the foregoing disclosure and, in some instances, some features of the present invention may be employed without a corresponding use of the other features. Many such variations and modifications may be considered obvious and desirable by those skilled in the art based upon a review of the foregoing description of preferred embodiments. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4088459 | Tuzson | May 1978 | A |
4481020 | Lee et al. | Nov 1984 | A |
5207810 | Sheth | May 1993 | A |
5482117 | Kolpak et al. | Jan 1996 | A |
6113675 | Branstetter | Sep 2000 | A |
6289614 | Roselle et al. | Sep 2001 | B1 |
6723158 | Brown et al. | Apr 2004 | B2 |
7461692 | Wang | Dec 2008 | B1 |
20030111230 | Olson et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
2009097869 | Aug 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20130039782 A1 | Feb 2013 | US |