Gas spargers and related container systems

Information

  • Patent Grant
  • 10328404
  • Patent Number
    10,328,404
  • Date Filed
    Tuesday, May 16, 2017
    7 years ago
  • Date Issued
    Tuesday, June 25, 2019
    5 years ago
Abstract
A container system includes a collapsible bag having an interior surface at least partially bounding a chamber, the chamber being adapted to hold a fluid. A sparger is disposed within the chamber of the bag, the sparger bounding a compartment and having an inside edge that encircles an opening passing through the sparger. At least a portion of the sparger is gas permeable. A tubular member is coupled to the sparger and is in communication with the compartment. A shaft passes into the chamber of the bag and through the opening of the sparger. A mixing element is secured to the shaft and is disposed within the chamber of the bag.
Description
BACKGROUND OF THE INVENTION

1. The Field of the Invention


The present invention relates to gas spargers and container systems that incorporate a gas sparger.


2. The Relevant Technology


Spargers are commonly used in bioreactors for delivering controlled volumes of gas to a growth media containing cells. In part, the gas is used to control the partial pressure of oxygen within the growth media and to control the pH and other perimeters of the growth media so that the conditions are optimal for cell growth. Spargers typically comprise a hollow metal ring having a hose coupled thereto. The ring is formed from a sintered metal so that the ring is porous. The ring is manually positioned at the bottom of a container with the hose extending up through a port at the top of the container. During operation, pressurized gas is delivered to the ring through the hose. The gas then permeates out through the metal ring so as to enter the media in the form of small bubbles. As the bubbles travel up through the media, at least a portion of the gas becomes entrained within the media. Other conventional spargers comprise a section of stainless steel tubing that is bent into a ring with small diameter holes positioned along the curved length thereof.


Although conventional spargers are useful in delivering gas to the media, they have a number of shortcomings. For example, conventional spargers are relatively expensive to make and are thus designed to be reused. Reuse of a conventional sparger, however, requires that it be removed from the container and then cleaned and sterilized. In some situations, cleaning of the sparger can be difficult in that cell by-product, dead cells, and other particulate within the growth media can be lodged on or trapped within the sparger. Thus cleaning and sterilizing of the sparger can be both time consuming and expensive. Time and care must also be taken to properly position and seal the sparger within the container without contaminating the sparger or the container.


Furthermore, in conventional bioreactors it is necessary that the growth media containing the cells be continually mixed or suspended so that the properties of the growth media remain homogeneous. Conventional spargers can obstruct the flow of the fluid which can produce dead spots where the cells die. Furthermore, the cells can be caught on or by the sparger which can damage or kill the cells. In addition, the spargers must be carefully designed and positioned so that they do not obstruct the mixing system.


Accordingly, what is needed are spargers and container systems that do not require cleaning or sterilization, which can be used without risk of contamination of the container or sparger, and which produce minimum obstruction to the fluid flow within the container and the mixing system.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present invention will now be discussed with reference to the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope.



FIG. 1 is a cross sectional side view of a containment system having a sparger;



FIG. 2 is a bottom perspective view of the sparger of the containment system depicted in FIG. 1;



FIG. 3 is a cross sectional side view of the sparger show in FIG. 2;



FIG. 3A is a cross sectional side view of the sparger shown in FIG. 3 using a transition member to connect the base to the sparging sheet;



FIG. 3B is a cross sectional side view of the sparger shown in FIG. 3A showing a modified connection using the transition member;



FIG. 3C is a cross sectional side view of the sparger shown in FIG. 3 wherein the perimeter edge of the sparging sheet has a polymeric coating and is connected to the base;



FIG. 4 is a cross section side view of the container shown in FIG. 1 having a vertical mixer disposed therein;



FIG. 5 is a bottom perspective view of the mixing disk of the vertical mixer shown in FIG. 4;



FIG. 6 is a cross sectional side view of an alternative embodiment of a sparger mounted on a rigid support housing;



FIG. 7 is a top perspective view of an alternative embodiment of a sparger having a substantially donut shape configuration;



FIG. 8 is a cross sectional side view of the sparger shown in FIG. 5;



FIG. 9 is an alternative embodiment of the sparger shown in FIG. 6 wherein the tube has been replaced with a port that extends down through the base of the sparger;



FIG. 10 is a cross sectional side view of another alternative embodiment of a sparger formed from a plurality of sparging sheets that are seamed together;



FIG. 11 is a cross sectional side view of an alternative embodiment of a sparger wherein a sparging sheet has been secured to a bottom end wall of a container;



FIG. 12 is a cross sectional side view of another embodiment of a sparger wherein the sparging sheet has been secured to the flange of a port mounted on a container;



FIG. 13 is a cross sectional side view of a container system comprising a container having a sparging sheet as a liner; and



FIG. 14 is a cross sectional side view of a container system comprising a container having a sparging sheet lining a floor thereof.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention relates to gas spargers and container systems that incorporate a gas sparger. In general, the gas spargers of the present invention include a flexible, gas permeable sparging sheet. During operation, a gas is delivered to the sparger which is associated with a container holding a fluid. The gas passes through the flexible, gas permeable sparging sheet of the sparger so as to enter the fluid within the container. As the gas travels or mixes within the fluid, at least a portion of gas becomes entrained within the fluid. The sparger is thus used to control the partial pressure of the gas within the fluid and/or control related properties of the fluid, such as the pH. Such spargers can be used in bioreactors where it is necessary to control the oxygen content and other properties of the growth media to facilitate proper growth of cells and microorganisms. However, the spargers can also be used in fermentation systems and in other fluid processing systems where it is needed or desirable to expose a gas to a fluid.


As a result of using a flexible, gas permeable sparging sheet as the sparging mechanism, select embodiments of the inventive spargers have a variety of unique benefits over conventional rigid metal spargers. By way of example and not by limitation, the inventive spargers are relatively inexpensive to make and can thus be disposed of after a single use. As such, there is no need for cleaning or sterilizing between uses. The spargers can be easily scaled for use in small laboratory experiments or large scale commercial production systems. The flexible, gas permeable sparging sheets can be selected and sized to disperse the gas as micro-bubbles having a desired size over a desired area. Such dispersion enables the gas to be more easily entrained into the fluid while minimizing foam production. In addition, select embodiments of the inventive spargers can be formed on or connected to the container so as to form a low profile sparger that has minimal interference with fluid flow or cell movement within the container.


The inventive spargers can be formed as part of a flexible container, such as a disposable bag or liner, or can be coupled to such flexible containers. The sparger and related container can then be simultaneously sterilized and sold as a unitary system. This approach simplifies the sterilization process and eliminates the difficulty of the end user having to manually insert and properly position the sparger within the container without compromising sterility of the container or the sparger. Alternatively, the disposable spargers of the present invention can be designed to be retrofitted into existing rigid containers. Furthermore, in some embodiments the entire sparger or substantial portions thereof can be designed to be soft and flexible so that the combined sparger and container can be folded and/or rolled into a compact shape for storage and/or transport without risk of damage to the sparger or container. Numerous other advantages of different embodiments of the present invention will be discussed below or will be apparent from the following disclosure and appended drawings.


Depicted in FIG. 1 is one embodiment of a containment system 10 incorporating features of the present invention. Containment system 10 comprises a substantially rigid support housing 12 in which a container system 30 is disposed. Support housing 12 has an upper end 14, a lower end 16, and an interior surface 18 that bound a compartment 20. Formed at lower end 16 is a floor 22. An opening 24 extends through floor 22 so as to communicate with compartment 20. Upper end 14 terminates at a lip 26 that bounds an access opening 28 to compartment 20. If desired, a cover, not shown, can be mounted on upper end 14 so as to cover access opening 28. It is appreciated that support housing 12 can come in a variety of different sizes, shapes, and configurations. For example, in one alternative embodiment access opening 28 can be closed by a permanent top end wall. An access port can be formed at another location on support housing 12 such as the sidewall or floor. The access port can be selectively closed by a door.


As also depicted in FIG. 1, container system 30 is at least partially disposed within compartment 20 of support housing 12. Container system 30 comprises a container 32 having a sparger 34 mounted thereon. In the embodiment depicted container 32 comprises flexible bag-like body 36 having an interior surface 38 that bounds a chamber 40. More specifically, body 36 comprises a side wall 42 that, when body 36 is unfolded, has a substantially circular or polygonal transverse cross section that extends between a first end 44 and an opposing second end 46. First end 44 terminates at a top end wall 48 while second end 46 terminates at a bottom end wall 50.


Body 36 is comprised of a flexible, water impermeable material such as a low-density polyethylene or other polymeric sheets having a thickness in a range between about 0.1 mm to about 5 mm with about 0.2 mm to about 2 mm being more common. Other thicknesses can also be used. The material can be comprised of a single ply material or can comprise two or more layers which are either sealed together or separated to form a double wall container. Where the layers are sealed together, the material can comprise a laminated or extruded material. The laminated material comprises two or more separately formed layers that are subsequently secured together by an adhesive.


The extruded material comprises a single integral sheet that comprises two or more layers of different materials that can be separated by a contact layer. All of the layers are simultaneously co-extruded. One example of an extruded material that can be used in the present invention is the Thermo Scientific CX3-9 film available from Thermo Fisher Scientific. The Thermo Scientific CX3-9 film is a three-layer, 9 mil cast film produced in a cGMP facility. The outer layer is a polyester elastomer coextruded with an ultra-low density polyethylene product contact layer. Another example of an extruded material that can be used in the present invention is the Thermo Scientific CX5-14 cast film also available from Thermo Fisher Scientific. The Thermo Scientific CX5-14 cast film comprises a polyester elastomer outer layer, an ultra-low density polyethylene contact layer, and an EVOH barrier layer disposed therebetween. In still another example, a multi-web film produced from three independent webs of blown film can be used. The two inner webs are each a 4 mil monolayer polyethylene film (which is referred to by Thermo Fisher Scientific as the Thermo Scientific BM1 film) while the outer barrier web is a 5.5 mil thick 6-layer coextrusion film (which is referred to by Thermo Fisher Scientific as the Thermo Scientific BX6 film).


The material is approved for direct contact with living cells and is capable of maintaining a solution sterile. In such an embodiment, the material can also be sterilizable such as by ionizing radiation. Examples of materials that can be used in different situations are disclosed in U.S. Pat. No. 6,083,587 which issued on Jul. 4, 2000 and United States Patent Publication No. US 2003-0077466 A1, published Apr. 24, 2003 which are hereby incorporated by specific reference.


In one embodiment, body 36 comprises a two-dimensional pillow style bag wherein two sheets of material are placed in overlapping relation and the two sheets are bounded together at their peripheries to form internal chamber 40. Alternatively, a single sheet of material can be folded over and seamed around the periphery to form internal chamber 40. In another embodiment, body 36 can be formed from a continuous tubular extrusion of polymeric material that is cut to length and the ends seamed closed.


In still other embodiments, body 36 can comprises a three-dimensional bag that not only has an annular side wall but also a two dimensional top end wall 48 and a two dimensional bottom end wall 50. Three dimensional body 36 comprises a plurality of discrete panels, typically three or more, and more commonly four or six. Each panel is substantially identical and comprises a portion of the side wall, top end wall, and bottom end wall of body 36. Corresponding perimeter edges of each panel are seamed. The seams are typically formed using methods known in the art such as heat energies, RF energies, sonics, or other sealing energies.


In alternative embodiments, the panels can be formed in a variety of different patterns. Further disclosure with regard to one method of manufacturing three-dimensional bags is disclosed in United States Patent Publication No. US 2002-0131654 A1 that was published Sep. 19, 2002 of which the drawings and Detailed Description are hereby incorporated by reference.


It is appreciated that body 36 can be manufactured to have virtually any desired size, shape, and configuration. For example, body 36 can be formed having chamber 40 sized to 10 liters, 30 liters, 100 liters, 250 liters, 500 liters, 750 liters, 1,000 liters, 1,500 liters, 3,000 liters, 5,000 liters, 10,000 liters or other desired volumes. Although body 36 can be any shape, in one embodiment body 36 is specifically configured to be complementary or substantially complementary to compartment 20 of support housing 12.


In any embodiment, however, it is desirable that when body 36 is received within compartment 20, body 36 is uniformly supported by support housing 12. Having at least generally uniform support of body 36 by support housing 12 helps to preclude failure of body 36 by hydraulic forces applied to body 36 when filled with fluid.


Although in the above discussed embodiment container 32 has a flexible, bag-like configuration, in alternative embodiments it is appreciated that container 32 can comprise any form of collapsible container or semi-rigid container. Furthermore, in contrast to having a closed top end wall 48, container 32 can comprise an open top liner. Container 14 can also be transparent or opaque and can have ultraviolet light inhibitors incorporated therein.


Mounted on top end wall 48 are a plurality of ports 52 which are in fluid communication with chamber 40. Although two ports 52 are shown, it is appreciated that one or three or more ports 52 can be present depending on the intended use of container 32. As such, each port 52 can serve a different purpose depending on the type processing to be undertaken. For example, ports 52 can be coupled with a tube 54 for dispensing fluid or other components into chamber 40 or withdrawing fluid from chamber 40. In addition, such as when container 32 is used as a bioreactor for growing cells or microorganisms, ports 52 can be used to provide various probes, such as temperature probes, pH probes, dissolved oxygen probes, and the like, access to chamber 40.


Extending through bottom end wall 50 of container 32 is a hole 60. Hole 60 is aligned with opening 24 on floor 22 of support housing 12. A portion of sparger 34 extends through hole 60 and opening 24. Sparger 34 is sealed to body 36 of container 32 so that fluid cannot leak out through hole 60. In general, sparger 34 comprises a base 62 having a flexible, gas permeable sparging sheet 64 mounted thereon.


Turning to FIG. 2, base 62 of sparger 34 comprises a tubular member 66 having an interior surface 68 and an opposing exterior surface 70 each extending between a first end 72 and an opposing second end 74. Interior surface 68 bounds a passage 76 that longitudinally extends through tubular member 66. A flange 78 encircles tubular member 66 at first end 72 and radially outwardly projects therefrom. In the embodiment depicted, flange 78 has a substantially circular configuration. In alternative embodiments, flange 78 can be any other desired shape such as elliptical, square, or other polygonal or irregular configurations. Flange 78 has a first side 80 and an opposing second side 82 that each extend out to a perimeter edge 84. Tubular member 66 and flange 78 can be molded as a unitary integral piece. Alternatively, tubular member 66 can be connected to flange 78 by welding or other conventional techniques.


In one embodiment, base 62 is molded from a soft, resiliently flexible polymeric material or elastomeric material such as polyethylene, silicone or KRATON® having a durometer on a Shore A scale with a value of less than 90 and more preferably less than 70 but typically greater than 5. In other embodiments, other thermoset or thermoplastic polymers having a durometer in the above range can also be used. Other materials such as those previously discussed with regard to container 32 can also be used. In some embodiments, as a result of the material properties, tubular member 66 can be manually folded over so as to kink passage 76 closed or tubular member 66 can be manually pinched to close passage 76 wherein in each case tubular member 66 will resiliently return to the original configuration with no permanent deformation.


In one embodiment, flange 78 has a maximum diameter typically in a range between about 2 cm to about 30 cm with about 5 cm to about 15 cm being more common. Tubular member 66 typically has a length in a range between about 2 cm to about 30 cm with about 5 cm to about 15 cm being more common. Likewise, tubular member 66 typically has a maximum inner diameter in a range between about 0.2 cm to about 5 cm with about 0.5 cm to about 3 cm being more common. In alternative embodiments, it is appreciated that each of the above dimensions can be varied. For example, if desired tubular member 66 can comprise an elongated tube having a length of one meter or longer. It is further noted that in the present embodiment second end 74 of tubular member 66 has a smooth, substantially cylindrical configuration on interior surface 68 and exterior surface 70 with no flanges, barbs, or other projections extending therefrom.


One of the benefits of base 62 is that it is more easily adaptable for coupling with tubes of different diameter or configuration. For example, it is envisioned that container system 30, which comprises container 32 and sparger 34, could be sold to an end user as a single unit. In turn, the established system of the end user may have a variety of different sizes or types of gas hoses that would connect with tubular member 66 of sparger 34 for delivering gas thereto. As a result of flexible tubular member 66, only a single coupler having opposing ends with predefined sizes is needed to couple tubular member 66 to the gas hose. For example, depicted in FIG. 1, a tubular coupler 88 is provided having opposing ends 90 and 92 with annular barbs radially outward projecting therefrom. First end 90 is secured within passage 76 at second end 74 of tubular member 66. Tubular member 66 resiliently constricts around coupler 88 to form a fluid tight seal therewith. A plastic pull tie 77 can also be secured around the portion of second end 74 of tubular member 66 disposed over coupler 88 so as to further secure the sealed engagement therebetween. Second end 92 of coupler 88 is received within a first end 94 of a gas line 96. If gas line 96 has a diameter different than tubular member 66, a standard coupler 88 can be provided with second end 92 having a size configured to couple with gas line 96.


In contrast, if a conventional barbed stem were formed on flange 78, it would be necessary to first couple a tube to the barbed stem and then use coupler 88 to account for the change in size of gas line 96. As a result, tubular member 66 provides for a more universal connection. Furthermore, as a result of flange 78 and tubular member 66 both being comprised of a soft and flexible material, container 32 can folded and/or rolled up for transport and/or storage without fear of damage to sparger 34 and/or container 32.


Turning to FIG. 3, sparging sheet 64 is secured to first side 82 of flange 78 at or adjacent to perimeter edge 84 of flange 78. As a result, a compartment 100 is formed between first side 80 of flange 78 and sparging sheet 64. Passage 76 of tubular member 66 communicates with compartment 100. In the depicted embodiment, sparging sheet 64 has substantially the same configuration as flange 78. In alternative embodiments, sparging sheet 64 can have a configuration different than flange 78. For example, where flange 78 remains circular, sparging sheet 64 can be elliptical, square, triangular, or have other polygonal or irregular configurations. Furthermore, sparging sheet 64 need not extend all the way out to perimeter edge 84 but can be secured to flange 78 at a location radially spaced inward from perimeter edge 84. In this design, flange 78 includes an annular edge portion that extends between the edge of sparging sheet 64 and perimeter edge 84. This edge portion can be used for sealing flange 78 to container 32. It is also appreciated that sparging sheet 64 can be configured to rest flat against flange 78 or can be configured to tent upward when compartment 100 is filled with gas. By increasing the surface area of sparging sheet 64, sparging can be accomplished over a greater area.


In one embodiment sparging sheet 64 can be secured to flange 78 by directly welding the perimeter edge 86 of sparging sheet 64 to flange 78. Depending on the type of material used for sparging sheet 64 and flange 78, conventional welding techniques such as heat welding, RF energy, ultrasonic, and the like can be used. In still other embodiments, various forms of adhesives can be used to connect sparging sheet 64 to flange 78. In addition, there are numerous forms of mechanical type fasteners that can be used to form the connection. For example, one or more crimps or clamps can be used to secure sparging sheet 64 to flange 78. Other conventional fastening techniques can also be used.


In contrast to securing sparging sheet 64 directly to flange 78, a transition member can be used therebetween. For example, depicted in FIG. 3A, a ring shaped transition member 55 has a top surface 56 and an opposing bottom surface 57 extending between an inside first end 58 and an outside second end 59. Transition member 55 is typically formed from a sheet of polymeric material that will easily and securely bond with flange 78 by any of the welding techniques previously discussed. Examples of such materials include the same materials as previously discussed with regard to base 62 and body 36. During assembly, bottom surface 57 at second end 59 of transition member 55 is welded to flange 78. First end 58 is not secured to flange 78 and is thus free to move relative thereto. Sparging sheet 64 is secured to transition member 55 such as by being welded to bottom surface 57 at first end 58 (FIG. 3A) or by being welded to top surface 56 at first end 58 (FIG. 3B).


Depending on the type of material used for sparging sheet 64, using transition member 55 can produce a number of benefits. For example, as will be discussed below in greater detail, one type of material that can be used for sparging sheet 64 is a spun-bonded olefin material such as that commonly sold under the tradename TYVEK®. However, heat welding a non-coated spun-bonded olefin material to flange 78 can cause the spun-bonded olefin material to thin, thereby decreasing its structural strength. When gas is applied to sparger 34, a high stress, point load is formed at the inside intersection between sparging sheet 64 and flange 78. Depending on the amount of thinning of sparging sheet 64, this load can result in failure of sparging sheet 64. By using transition member 55, the high stress, point load caused by the gas is formed between flange 78 and transition member 55 which, due to material compatibilities, can easily withstand the load without failure. By welding sparging sheet 64 onto the freely movable first end 58 of transition member 55, the load between sparging sheet 64 and transition member 55 is uniformly applied in shear across the weld between the two members. This decreased load can be easily handled by sparging sheet 64 even after thinning.


In another alternative embodiment as depicted in FIG. 3C, a coating 65 can be applied on one or both sides of perimeter edge 86 of sparging sheet 64. Coating 65 can comprise a polymeric material, such as low-density polyethylene, ethylene vinyl acetate or other coatings commonly used to coat TYVEK®. Coating 65 can minimize or prevent thinning of sparging sheet 64 so that the coated portion of sparging sheet 64 can be directly welded to flange 78.


Sparging sheet 64 can be comprised of a variety of different materials having a variety of different properties. As previously discussed, sparging sheet 64 is typically comprised of a sheet of gas permeable flexible material. Sparging sheet 64 typically has a thickness in a range between about 20 μm to about 2.5 cm, with about 20 μm to about 5000 μm being common, about 20 μm to about 1,000 μm being more common, and 50 μm to about 300 μm being still more common. Sparging sheet 64 can also have a burst strength in a range between about 2 psig (14 kPa) to about 50 psig (343 kPa), with about 2 psig (14 kPa) to about 25 psig (172 kPa) being more common, and about 2 psig (14 kPa) to about 10 psig (68 kPa) being even more common. Sparging sheet 64 can also be produced having a porosity in a range between about 0.1 to about 300 (sec/100 cc IN2), with about 5 to about 100 (sec/100 cc IN2) being common, 5 to about 60 (sec/100 cc IN2) being more common, and about 5 to about 30 (sec/100 cc IN2) being still more common as measured using the quantitative property of Gurley Hill Porosity. Such thicknesses, burst strength, and porosity can vary and depend in large part on the type of material being used.


In some embodiments, sparging sheet 64 is comprised of a material that is both vapor-permeable and water-resistant. That is, although the gas can pass through sparging sheet 64, water and some other fluids are prevented from flowing therethrough when not in use. Similarly, sparging sheet 64 may be constructed so as to only allow gas to pass therethrough when it is subject to sufficiently high gas pressure. It is often desirable to have a material with high permeability while maintaining hydrophobicity, strength, weldability, biocompatibility, and gamma stability.


It is also often desirable to have a flexible material that welds readily to common materials used in conventional ports and films (such as films discussed with regard to container 32). For example, the flexible nature of a soft or paper like film can allow it to be folded during manufacturing, packaging, loading, and use of the bioreactor. It may also be desirous to allow for the surface area and shape of the sparge material to easily be modified or changed according to weld or cut pattern.


Examples of select types of materials that can be used in the formation of sparging sheet 64 include: (1) polymeric nonwoven fabrics, (2) solvent cast polymeric films, (3) open cell foamed polymer sheets, and (4) perforated polymeric sheets. As used herein, the term “nonwoven fabric” means a web having a structure of individual fibers or threads that are interlaid, but not in an identifiable manner such as in knitted or woven fabric. Nonwoven fabrics can be formed by many processes such as for example, meltblowing processes, spunbonding processes, hydroentangling, air-laid and bonded carded web processing. One specific type of nonwoven fabric that has been found particularly useful in the present invention is spun-bonded olefin materials that are commonly sold under the tradename TYVEK®. TYVEK® is typically formed by a process using continuous and very fine fibers that are comprised of a high-density polyethylene. The fibers typically having an average diameter in a range between about 2 micrometers to about 8 micrometers. These fibers are flashspun and then laid as a web on a moving belt in a randomly distributed and nondirectional pattern. Finally, the web of fibers are bonded together using heat and pressure. The final web typically has a thickness in a range between about 50 microns to about 250 microns.


TYVEK® has been found useful in view of its favorable qualities of having high permeability while maintaining hydrophobicity, strength, weldability, biocompatibility, and gamma stability. TYVEK® film can be produced having a porosity in a range between about 6 to about 30 (sec/100 cc IN2) as measured using the quantitative property of Gurley Hill Porosity. Permeability rated according to the methods of Bendtsen Air Permeability are often in a range between about 400 to about 2000 (ml/min). Medical grades of TYVEK® typically have a relative pore size of about 20 (micrometers) and a surface energy of about 25 to about 32 (dynes/cm). Moisture Vapor Transmission Rates (MTVR) often ranges from about 1500 to about 1640 (g/m2/24 hrs).


As used herein, the term “solvent cast polymeric films” means polymeric films that are initially produced with a solvent. The solvent is removed during the production process so that the resulting film has a desired porosity. Examples of cast polymeric films include polytetrafluoroethylene sold under the tradename TEFLON®, polysulfone, polypropylene, silicone, KYNAR® (PVDF), GORTEX® and the like. In one embodiment, the cast polymeric films can be attached is a porous support layer such as a woven fabric or one of the other materials described herein.


Open cell foamed polymer sheets are well known in the art and can be formed from a variety of different polymeric materials such as low density polyethylene, high density polyethylene, polypropylene, or polyurethane. The materials are foamed with a gas using conventional processes to form an open cell structure that is porous to gas. It is envisioned that open cell foamed polymer sheets will typically have a thickness in a range between about 1 mm to about 25 mm.


Perforated polymeric sheets include sheets of polymeric material that are formed using conventional processes, such as extrusion, and are then subsequently perforated so as to make the sheet porous. The small perforated holes can be produced such as by being punched or embossed into the sheet. In one embodiment the perforated holes can have a diameter in a range between about 20 μm to about 5 mm with about 20 μm to about 500 μm being more common. Perforated polymeric sheets can be produced from a variety of different materials such as polyethylene, different fluorinated polymers and other materials as previously discussed with regard to body 36.


In some embodiments, sparging sheet 64 can include a combination or laminate of two or more of the above types of materials.


Returning to FIG. 1, bottom surface 82 of flange 78 is sealed to bottom end wall 50 of container 32 so as to secure sparger 34 to container 32 and to prevent liquid from leaking out through hole 60. Flange 78 is typically secured to container 32 by conventional welding techniques. Alternatively, however, adhesives or mechanical connections can also be used. During the assembly stage, sparging sheet 64 and container 32 can be secured to opposing sides of flange 78 either simultaneously, such as through a welding process, or in progressive stages in any desired order. Once container system 30 is fully assembled, the system can be sealed within a storage bag and then the entire system sterilized such a through various forms of radiation sterilization.


During operation, container system 30 is positioned within compartment 20 of support housing 12 so that tubular member 66 of sparger 34 passes down through opening 24 in floor 22 of support housing 12. Gas line 96 is then coupled with tubular member 66 using coupler 88 as previously discussed. In alternative embodiments, tubular member 66 can be formed as an elongated tube which can extend directly to the gas source.


Next, a fluid 104 is dispensed into chamber 40 of container 32 by way of port 52. Fluid 104 can comprise a variety of different materials. For example, where container system 30 is being used as a bioreactor for growing cells or microorganisms, fluid 104 can comprise a growth media that is dependent upon the type of cells or microorganism being cultured. The fluid can also include a seed inoculum such as bacteria, fungi, algae, plant cells, animal cells, protozoans, nematodes, or the like. The present invention can also be used for non-biological systems. For example, the system can be used for processing or mixing solutions where it is desired to control or regulate the pH or partial pressure of gas within a solution.


Once fluid 104 is disposed within chamber 40 of container 32 and/or simultaneously with the filling thereof, a gas can be delivered through gas line 96 so as to enter compartment 100 of sparger 34. The gas migrates through sparging sheet 64 where it then contacts fluid 104 within chamber 40. Because of the relatively large surface area of sparging sheet 64 and the small pore size thereof, the gas passes out through sparging sheet 64 in the form of microbubble that can be easily entrained within fluid 104. Again, the type of gas passing through sparger 34 depends upon the type of processing needed for the fluid within chamber 40. Where cells are microorganisms are being cultured, the gas typically comprises air that is selectively combined with oxygen, carbon dioxide, and/or nitrogen. Again, in other embodiments specific gases, such as those identified above, or combinations of gases can be passed through sparger 34.


As also depicted in FIG. 1, in one embodiment it may be beneficial to use a check valve 106 along gas line 96 or at sparger 34 to reduce undesirable transfer of fluid vapor through sparging sheet 64 when sparger 34 is submerged and not in use. Actual moisture transmission rates may vary largely with the type of fluid 104 used and the particular application.


Although not required, in one embodiment means are provided for mixing fluid 104 within chamber 40. By way of example and not by limitation, in one embodiment a drive shaft 110 projects into chamber 40 and has an impeller 112 mounted on the end thereof. External rotation of drive shaft 110 thus facilitates rotation of impeller 112 which mixes and/or suspends fluid 104 within chamber 40. Sparger 34 is typically disposed directly below the means for mixing such that the mixing or movement of fluid 104 produced by the mixer helps to entrain the gas bubbles within fluid 104. One specific example of how to incorporate a rotational mixer into a flexible container is disclosed in U.S. Patent Publication No. 2005/0239199 A1, published Oct. 27, 2005 which is incorporated herein by specific reference. Another example is disclosed in U.S. Publication No. 2006/0280028 A1, published Dec. 14, 2006, which is incorporated herein by specific reference.


In an alternative embodiment of the means for mixing, mixing can be accomplished by vertically reciprocally moving a vertical mixer within chamber 40. For example, depicted in FIG. 4 is one embodiment of a vertical mixer 129 comprising a mixing disk 130 have a plurality of openings 131 extending therethrough. As depicted in FIG. 5, a plurality of flexible flaps 132 are mounted on the bottom surface of mixing disk 130 such that as disk 130 is moved vertically upward, flaps 132 open to allow the fluid to pass through openings 131 and when disk 130 is pulled downward, flaps 132 lay flush against disk 130, thereby closing openings 131. With openings 131 closed, mixing disk 130 forces the fluid down and then back up and around mixing disk 130 so as to mix the fluid within container 32.


A shaft 133 extends down mixing disk 130 and passes out through an opening in container 32. Outside of container 32, shaft 133 connects with a drive mechanism for selectively raising and lower shaft 133 at a desired frequency and over a desired height. A flexible diaphragm 134 extends between container 32 and shaft 133 so as to form a sealed fluid connection between shaft 133 and container 32. As shaft 133 raises and lowers, flexible diaphragm 134 flexes to allow free movement of shaft 133 and thus mixing disk 130. Further disclosure with regard to the assembly and operation of vertical mixer 129 is disclosed in US Publication No. 2006/0196501, published Sep. 7, 2006, which is incorporated herein by specific reference. In yet other embodiments, it is appreciated that the mixing can be accomplished by simply circulating fluid through chamber 40 such as by using a peristaltic pump to move fluid in and out of chamber 40. Other conventional mixing techniques can also be used.


Welding sparger 34 onto container 32 can provide for a high level of surface area while providing a low-profile sparge. In some embodiments, this can reduce turbulence near impeller 112 and/or reduce the possibility of cells accumulating in cracks, seams, or crevices. Furthermore, using a single use disposable container system 30 may be helpful in avoiding or reducing contamination and cleaning issues that may be associated with some conventional spargers, which sometimes involve cleaning numerous holes, pores, and crevices of such units. For example, small void areas in some spargers may present areas for cell debris or other material to lodge and accumulate leading to increased occurrence of contamination. In some cases, this may carry over in subsequent runs.


As previously discussed, one purpose of using sparger 34 in a cell culture is to aid in the mass transfer of oxygen (kLa), which is often necessary for the respiration of the growing cells. An advantage of using sparger 34 in a single use bioreactor is that the tortuous pore structure of sparging sheet 64, such as when TYVEK® is used, can allow for a beneficial effect on mass transfer of oxygen from the bulk gas introduced through sparger 34. In some embodiments, it is desirable to have small bubbles introduced into the bioreactor as they can benefit mass transfer. Mass transfer across a permeable membrane can occur independent of mass transfer resulting from a gas bubble. Relatedly, a long gas retention time within the fluid column and a higher surface to volume ratios are often desirable effects.


It is generally accepted that the bubble size can be dominated by surface tension effects, inherently related to the component ratio of salts, proteins, sugars, and micro and macro components of the nutrient media. Experimentally calculated kLa values, visual observation, and data from bioreactor runs often indicate that bubble size and perhaps improved mass transfer are qualities of the present sparge approaches. The composition and rheological properties of the liquid, mixing intensity, turnover rate of the fluid, bubble size, presence of cell clumping, and interfacial absorption characteristics all influence mass transfer of gas such as oxygen to the cells. Main driving forces of mass transfer include surface area and concentration gradient. In many cases, a main source of resistance of oxygen mass transfer in a stirred tank bioreactor can be the liquid film surrounding the gas bubble.


By using TYVEK® and the other similar gas permeable membranes as discussed above, the surface area of sparging sheet 64 can easily be increased. In some embodiments, the oxygen gradient between sparging sheet 64 and the liquid interface can be maintained at a high level through constant replenishment directly through a sparge inlet. Further, a rapid mixing intensity can also benefit mass transfer as the impeller 112 pumps media directly down onto sparging sheet 64. The use of a gas permeable membrane can allow for mass transfer of oxygen across the bulk film surface, which can be in addition to the formation of bubbles that rise within the fluid column.


In many cases, small bubbles can lead to greater foaming at the top of a bioreactor, which can have negative effects on cell viability and kLa according to Henry's law and the solubility of gases related to partial pressures. This boundary layer often results in a reduced ability to control dissolved oxygen levels within the bulk liquid. Typically, it is desirable to avoid or mitigate the presence of foam, as excessive amounts can result in exhaust filter blocking and run failure. The novel sparger approaches described herein can provide the desired mass transfer properties, often with reduced levels of foam generated as compared to conventional systems. This may be due to greater efficacy and less gas being introduced through the sparger to maintain a target oxygen solubility.


It is appreciated that sparger 34 can come in a variety of different sizes, shapes, designs, and configurations. By way of example and not by limitation, depicted in FIG. 6 is an alternative embodiment of a sparger 120 incorporating features of the present invention. Like elements between sparger 120 and sparger 34 are identified by like reference characters. Previously discussed sparger 34 was disclosed as being mounted on flexible container 32. In contrast, sparger 120 is specifically designed to be removably mounted to a rigid container that is designed to hold fluid 104 without the use of a bag or liner. Specifically, as shown in FIG. 6, floor 22 of support housing 12 is shown having opening 24 extending therethrough. In this embodiment, however, a tubular collar 122 encircles opening 23 and extends down from floor 22. Collar 122 terminates at an annular lip 124.


Sparger 120 is substantially identical to sparger 34 except that tubular member 66 has been lengthened and a flange 128 encircles tubular member 66 and radially outward projects therefrom at a location between the opposing ends of tubular member 66. Flange has an outer diameter substantially the same as the outer diameter of lip 124 such that by positioning flange 128 against annular lip 124, a clamp 126 can secure flange 128 to annular lip 124, thereby sealing opening 24 closed. In this embodiment, fluid 104 can be dispensed directly into compartment 20 of support housing 12 and sparger 120 can be used to sparge fluid 104 therein. In view of the foregoing, sparger 120 can be retrofitted into existing rigid containers where the container is cleaned and sterilized between uses. However, sparger 120 remains a single use item that can be disposed of after each use.


Depicted in FIGS. 7 and 8 is another alternative embodiment of a sparger 140 having a substantially ring or donut shape. Sparger 140 comprises a substantially circular base 142 having a hole 144 centrally extending therethrough. In one embodiment, base 142 comprises a flexible sheet of nonporous polymeric material such as an extruded sheet of polyurethane or polyethylene. Base 142 can be comprised of the same materials as previously discussed with regard to body 36. In an alternative embodiment, base 142 can comprise a semi rigid or substantially rigid plate. For example, base 142 can be comprised of a high density polyethylene material or other rigid type plastics. Base 142 includes a top surface 146 and an opposing bottom surface 148 each extending between an inside edge 150 and an opposing outside edge 152. Inside edge 150 bounds opening 144.


In the embodiment depicted, a substantially circular sparging sheet 154 is provided having an inside edge 156 that bounds a central opening 157 and an outside edge 158. Inside edges 150 and 156 and outside edges 152 and 158 are sealed together, respectively, using previously discussed techniques such as welding, adhesive, or mechanical fastener. As a result, a compartment 160 is formed between base 142 and sparging sheet 154. Sparging sheet 154 can have the same properties as previously discussed with regard to sparging sheet 64. Furthermore, in this embodiment and all other embodiments discussed herein, one or more transition members 55 can be used to connect the sparging sheets to a separate structure such as base 142.


A tube 162 is coupled with sparging sheet 154. Tube 162 can be selectively coupled with a gas source for delivering the gas to compartment 160. Sparger 140 can be secured to a container such as by being welded or otherwise secured to bottom end wall 50 of container 32. For example inner edge 150 and/or outer edge 152 can be welded or otherwise secured to container 32.


Alternatively, sparger 140 can simply be positioned on the floor of container 32 or on the floor of support housing 12. Sparger 140 can be held in place by being weighted or other removable fastening techniques can be used to secure sparger 140 in place. With sparger 140 positioned in place, tube 162 can extend out through one of ports 52. Alternatively, tube 162 can be coupled with base 142 and then extend out through a hole in the bottom of container 32 and/or support housing 12. In alternative modifications to sparger 140, hole 144 can be eliminated on base 142 and/or hole 157 can be eliminated on sparging sheet 154. In yet another modification, base 142 can be made of the same material as sparging sheet 154.


Depicted in FIG. 9 is another alternative embodiment of a sparger 170. Like elements between sparger 170 and 140 are identified by like reference characters. Sparger 170 is substantially the same as sparger 140 and includes base 142 and sparging sheet 154. In contrast to sparger 140, however, in sparger 170 tube 162 has been removed and replaced with a port 172 mounted on base 142. Port 172 comprises a stem 174 having a first end 176 and an opposing second end 178. Stem 174 is one form of a tubular member and bounds a passage 184 extending therethrough. A flange 180 encircles and radially outwardly projects from first end 176 of stem 174. Flange 180 is mounted to top surface 146 of base 142 such as by welding, adhesive, or other conventional techniques. Stem 174 extends down through a hole formed on base 142. A barb 182 encircles and radially outwardly projects from second end 178 of stem 174. Stem 174 is adapted to couple with a tube for delivering gas to compartment 160. During assembly, stem 172 can pass down through a hole formed in container 32 and/or support housing 12. The same modifications and mountings as previously discussed with regard to sparger 140 can also be implemented with sparger 170. In still a further embodiment, port 172 can be replaced with base 62 of sparger 34. In this regard, base 62 can be referred to and function as a port.


Depicted in FIG. 10 is another alternative embodiment of a sparger 190. Sparger 190 comprises a body 192 that includes a plurality of sparging sheets secured together. Specifically, body 192 includes a first sparging sheet 194 having a substantially circular configuration that terminates at a perimeter edge 195. Body 192 also includes a second sparging sheet 196 that also has a substantially circular configuration and terminates at a perimeter edge 198. Perimeter edges 195 and 198 have been seamed together such as by welding, adhesive, or fastener. As a result, a compartment 200 is bounded between sparging sheets 194 and 196. In alternative embodiments, body 194 can be formed from one or three or more sheets of material using the same methods as previously discussed with regard to container 32. It is appreciated that body 194 can be configured in any of a variety of shapes, including spheres, cylinders, boxes, pyramids, irregular shapes, and the like, and may include any combination of permeable and non-permeable materials or surfaces.


Sparger 190 further comprises a tubular member 202 having a first end 204 coupled with second sparging sheet 196 and an opposing second end 206. Tubular member 202 bounds a passage 208 that communicates with compartment 200. It is appreciated that sparger 190 can be used with a reusable rigid container or a disposable flexible container. In the embodiment depicted, container 32 is depicted having a tubular port 210 mounted on bottom end wall 50. A coupling tube 212 has a first end 214 connected to port 210 and an opposing second end 216 connected a coupler 218. Coupler 218 includes an outside stem 220 that is received within second end 216 of coupling tube 212 so as to form a sealed engagement therewith, an inside stem 222 that is coupled with second end 206 of tubular member 202, and a distal stem 224 that is in fluid communication with inside stem 222 and is adapted to couple with a gas line. In this configuration, gas can be delivered to compartment 200 of sparger 190 by being passed through coupling tube 212 while maintaining compartment 40 of container 32 sealed closed. It is appreciated that there are a variety of different coupling techniques and couplers that can be used to coupler sparger 190 to container 32 so that a gas can be delivered to sparger 190.


Depicted in FIG. 11 is one embodiment of an inventive sparger 230 that is formed as a portion of container 32. Specifically, port 172, as depicted in FIG. 9, is mounted on interior surface 38 of bottom end wall 50 of container 32 so that stem 174 extends down through hole 60. Sparger 230 is formed by welding a perimeter edge 232 of a sparging sheet 234 directly to bottom end wall 50 of container 32 such that sparging sheet 324 encircles and covers port 172. As a result, sparger 230 has a compartment 236 that is bounded between bottom end wall 50 of container 32 and sparging sheet 234. As previously discussed, stem 174 of port 172 is adapted to couple with a gas line such that a gas can be delivered to compartment 236. It is appreciated that sparging sheet 234 as well as the other sparging sheets referenced herein can be made of the same alternative materials as previously discussed with regard to sparging sheet 64.


In the depicted embodiment, compartment 236 defines a dome-shaped space. Sparger assembly configurations such as those described herein can allow the surface area and corresponding gas flow rate requirements of, for example, sparging sheet 234, to be adjusted by utilizing different size shapes such as the dome shown here. As previously discussed, some embodiments of the present invention may include a check valve inline coupled with a tubing that is attached to port 172, which can prevent fluid backflow.


In alternative embodiments, port 172 can be replaced with base 62 as previously discussed with regard to FIG. 1. Alternative embodiments as previously discussed with regard to base 62 are also applicable to this alternative embodiment relating to FIG. 11. In this embodiment, flange 78 of base 62 can be directly secured to bottom end wall 50 of container 32 such that tubular member 66 extends through opening 60. Again, however, sparging sheet 234 attaches directly to bottom end wall 50 of container 32 without connecting directly to base 62.


In still other embodiments, it is appreciated that sparging sheet 234 and port 172 can be mounted at a variety of different location on container 32. In addition, sparging sheet 234 can be formed having any desired configuration. Port 172 can be replaced with a variety of alternative types of ports that can be used for coupling with a gas line and delivering a gas to compartment 236.


Depicted in FIG. 12 is another alternative embodiment of an inventive sparger 250. Sparger 250 is similar to sparger 230 and like elements are identified by like reference characters. In the embodiment depicted in FIG. 12, flange 180 of port 172 has been enlarged. Sparging sheet 234 has been secured directly to flange 180 so as to encircle and cover passage 184 extending through port 172.


Depicted in FIG. 13 is an alternative embodiment of a container system 260 incorporating features of the present invention. Container system 260 comprises container 32 that includes flexible body 36 having a port 52 mounted on the floor thereof. A flexible sparging sheet 262 is mounted to the sidewall of container 32 so as to cover at least a portion of the sidewall that extends below the fluid line and so as to also cover the floor of container. Sparging sheet 262 is formed from one or more of the porous materials previously discussed herein. During use, a gas is delivered through port 52. The gas permeates through sparging sheet 262 over a large surface area so that the gas can rapidly and efficiently be absorbed into the fluid. The embodiment depicted in FIG. 14 is substantially the same as that in FIG. 13 except that sparging sheet 262 only covers the floor of container 32.


The spargers of the present invention can also be used for the removal or stripping of undesirable dissolved compounds within the liquid. For example, a separate sparger, either used in conjunction or separately from the main sparger, can be used in a bioreactor to remove waste products created as a bioproduct of the biochemical reaction or cellular respiration (such as carbon dioxide). This sparger can be configured with larger pores in an effort to allow the undesirable dissolved gas components to be driven from the media in an effort to control variables such as pH, dissolved oxygen, or other process parameters.


It is appreciated that the foregoing embodiments are simply examples of alternative methods of forming spargers of the present invention. It is likewise appreciated that the various features of the different embodiments can be mixed and matched to produce still other embodiments.


The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A sparger comprising: a base having a top surface and an opposing bottom surface that extend between an inside edge and an outside edge, the inside edge encircling an opening that passes through the base;a sparging sheet secured to the base so that a compartment is formed between the base and the sparging sheet that encircles the opening passing through the base, at least a portion of the sparging sheet being gas permeable; anda tubular member coupled with the base or the sparging sheet so as to be in communication with the compartment.
  • 2. The sparger as recited in claim 1, wherein the base is ring shaped and the sparing sheet is ring shaped.
  • 3. The sparger as recited in claim 1, wherein the tubular member comprises a port, a stem, or an elongated tube that is either integrally formed with or connected to the base or the sparging sheet.
  • 4. The sparger as recited in claim 1, wherein the sparging sheet is comprised of a polymeric nonwoven fabric, a solvent cast polymeric film, an open cell foamed polymer sheet, or a perforated polymer sheet.
  • 5. The sparger as recited in claim 1, wherein the base is comprised of a flexible sheet of polymeric film.
  • 6. The sparger as recited in claim 1, wherein the sparging sheet is welded directly to the base.
  • 7. The sparger as recited in claim 1, further comprising a flexible transition member secured to and extending between the sparging sheet and the base, the transition member being comprised of a different material than the sparging sheet or the base.
  • 8. A container system comprising: a flexible polymeric bag having an interior surface bounding a chamber; andthe sparger as recited in claim 1 at least partially disposed within the chamber of the polymeric bag, the base of the sparger being secured to the polymeric bag.
  • 9. The container system as recited in claim 8, further comprising: a shaft passing into the chamber of the bag and through the opening of the base of the sparger; anda mixing element secured to the shaft and disposed within the chamber of the bag.
  • 10. A container system comprising: a bag comprised of one or more sheets of flexible polymeric material, the bag having an interior surface at least partially bounding a chamber, the chamber being adapted to hold a fluid;a sparger disposed within the chamber of the bag, the sparger bounding a compartment and having an inside edge that encircles an opening passing through the sparger, at least a portion of the sparger being gas permeable; anda tubular member coupled to the sparger and being in communication with the compartment.
  • 11. The container system as recited in claim 10, wherein the sparger further comprises: a ring shaped base secured to the interior surface of the container; anda ring shaped sparging sheet secured to the base so that the compartment is formed between the base and the sparging sheet, the compartment encircling the opening passing through the sparger, at least a portion of the sparging sheet being gas permeable.
  • 12. The container system as recited in claim 10, further comprising: a shaft passing into the chamber of the bag and through the opening of the sparger; anda mixing element secured to the shaft and disposed within the chamber of the bag.
  • 13. The container as recited in claim 12, wherein the mixing element comprises a mixing disk having a plurality of openings extending therethrough.
  • 14. The container as recited in claim 12, wherein the mixing element comprises an impeller.
  • 15. The container system as recited in claim 10, further comprising a rigid support housing in which the bag is disposed.
  • 16. A method for sparging a liquid with a gas, the method comprising: dispensing a liquid into a chamber of a container, a sparger being disposed within the chamber of the container and having an opening passing therethrough;delivering a gas into a compartment of the sparger so that the gas passes out through the sparger and into the liquid in the chamber; andmoving a mixer passing through the opening in the sparger so as to mix the gas and the liquid within the chamber.
  • 17. The method as recited in claim 16, wherein the step of dispensing the liquid comprises feeding one or more components into the chamber of the container to produce a liquid culture containing growing cells or microorganisms.
  • 18. The method as recited in claim 16, wherein the step of moving the mixer comprise repeatedly raising and lowering a shaft passing through the opening of the sparger, a mixing disk being attached to the shaft.
  • 19. The method as recited in claim 16, wherein the step of moving the mixer comprise rotating a shaft passing through the opening of the sparger, an impeller being attached to the shaft.
  • 20. The method as recited in claim 16, wherein the container comprises a collapsible bag and the method further comprises positioning the bag within a rigid support housing before dispensing the liquid.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 15/265,022, filed Sep. 14, 2016, which is a continuation of U.S. application Ser. No. 15/041,335, filed Feb. 11, 2016, U.S. Pat. No. 9,457,012, which is a continuation of U.S. application Ser. No. 14/663,068, filed Mar. 19, 2015, U.S. Pat. No. 9,259,692, which is a continuation of U.S. application Ser. No. 14/094,541, filed Dec. 2, 2013, U.S. Pat. No. 9,005,971, which is a continuation of U.S. application Ser. No. 11/385,541, filed Mar. 20, 2006, U.S. Pat. No. 8,603,805, which is a continuation-in-part of U.S. application Ser. No. 11/112,834, filed Apr. 22, 2005, U.S. Pat. No. 7,384,783, which are incorporated herein by specific reference.

US Referenced Citations (173)
Number Name Date Kind
1269189 Kadish Jun 1918 A
1471332 Greenawalt Oct 1923 A
1505204 Kiernan Aug 1924 A
2259243 Daman Oct 1941 A
2341114 Novak Feb 1944 A
2865618 Abell Dec 1958 A
3074544 Bollmeier et al. Jan 1963 A
3184395 Brewer May 1965 A
3207420 Navarrete-Kindelan Sep 1965 A
3545671 Ross Dec 1970 A
3608709 Pike Sep 1971 A
3647397 Coleman Mar 1972 A
3682168 Deaton Aug 1972 A
3701433 Krakauer Oct 1972 A
3702619 Son Nov 1972 A
3796417 Kaelin Mar 1974 A
4012471 Kunkle, Jr. Mar 1977 A
4012473 Lindsey et al. Mar 1977 A
4025590 Igich May 1977 A
4036919 Komendowski et al. Jul 1977 A
4061698 Thornwald Dec 1977 A
4100235 Thornwald Jul 1978 A
4157965 Raible Jun 1979 A
4204774 de Bruyne May 1980 A
4250039 Cozzi et al. Feb 1981 A
4391912 Yoshida Jul 1983 A
4402402 Pike Sep 1983 A
4458811 Wilkinson Jul 1984 A
4465645 Kaelin Aug 1984 A
4493637 Ganter et al. Jan 1985 A
4581143 Pepper Apr 1986 A
4588554 Kaartinen May 1986 A
4668632 Young et al. May 1987 A
4684486 Ricchio Aug 1987 A
4727040 Freedman et al. Feb 1988 A
4740202 Stacey et al. Apr 1988 A
4749654 Karrer et al. Jun 1988 A
4814124 Aoyama et al. Mar 1989 A
4869398 Colvin Sep 1989 A
4869852 Goudy, Jr. et al. Sep 1989 A
4981623 Ryan Jan 1991 A
5008197 Wergeland et al. Apr 1991 A
5023119 Yamaloshi Jun 1991 A
5057429 Watanabe et al. Oct 1991 A
5139946 Howell et al. Aug 1992 A
5183595 Schüssler Feb 1993 A
RE34386 Davidson et al. Sep 1993 E
5270207 Matsumura et al. Dec 1993 A
5287961 Herran Feb 1994 A
5376271 Morgan, Jr. Dec 1994 A
5416022 Amiot May 1995 A
5422043 Burris Jun 1995 A
5431496 Balteau Jul 1995 A
5431498 Balteau Jul 1995 A
5443985 Lu et al. Aug 1995 A
5458771 Todd Oct 1995 A
5487470 Pharo Jan 1996 A
5547108 Gsell Aug 1996 A
5565015 Kobayashi Oct 1996 A
5578459 Gordon Nov 1996 A
5693537 Wilson et al. Dec 1997 A
5763267 Kurjan Jun 1998 A
5788661 Japuntich Aug 1998 A
5799830 Carroll et al. Sep 1998 A
5858015 Fini Jan 1999 A
5858283 Burris Jan 1999 A
5897997 Louvel Apr 1999 A
5910138 Sperko Jun 1999 A
5925293 Howk Jul 1999 A
5941635 Stewart Aug 1999 A
6017598 Kreischer et al. Jan 2000 A
6068775 Custer May 2000 A
6071005 Ekambaram et al. Jun 2000 A
6083587 Smith et al. Jul 2000 A
6086574 Carroll et al. Jul 2000 A
6099734 Boggs Aug 2000 A
6117801 McGinty et al. Sep 2000 A
6146875 Ward Nov 2000 A
6186932 Vallot Feb 2001 B1
6219871 Frederick et al. Apr 2001 B1
6245555 Curtis Jun 2001 B1
6250796 Huang Jun 2001 B1
6251295 Johnson Jun 2001 B1
H1989 Fell et al. Sep 2001 H
6367783 Raftis Apr 2002 B1
6391638 Shaaltiel May 2002 B1
6398195 Sherman Jun 2002 B1
6406005 Lawson et al. Jun 2002 B1
6432698 Gaugler et al. Aug 2002 B1
6439756 Forschner et al. Aug 2002 B1
6464211 Downs Oct 2002 B1
6468792 Bader Oct 2002 B1
6494613 Terentiev Dec 2002 B2
6518057 Morrison Feb 2003 B2
6596521 Chang et al. Jul 2003 B1
6632658 Schoeb Oct 2003 B1
6642019 Anderson et al. Nov 2003 B1
6649405 Alms et al. Nov 2003 B2
6673598 Akers et al. Jan 2004 B1
6709862 Curtis Mar 2004 B2
6712963 Schick Mar 2004 B2
6745902 Lunn et al. Jun 2004 B2
6884866 Bronshtein et al. Apr 2005 B2
6908223 Bibbo et al. Jun 2005 B2
6923567 Bibbo et al. Aug 2005 B2
6969367 Hosheng Nov 2005 B2
7141203 Way et al. Nov 2006 B2
7198225 Chiba Apr 2007 B2
7278780 Goodwin et al. Oct 2007 B2
7326355 Graetz et al. Feb 2008 B2
7384027 Terentiev et al. Jun 2008 B2
7384783 Kunas et al. Jun 2008 B2
7390652 Condon Jun 2008 B2
7431837 Cohee et al. Oct 2008 B2
7448601 Boer Nov 2008 B2
7469884 Terentiev et al. Dec 2008 B2
7629167 Hodge et al. Dec 2009 B2
7681867 Hu et al. Mar 2010 B2
7682067 West et al. Mar 2010 B2
7935101 Muramatsu May 2011 B2
8282267 Castillo et al. Oct 2012 B2
8485727 Trouilly Jul 2013 B2
8603805 Goodwin et al. Dec 2013 B2
8960486 Goodwin et al. Feb 2015 B2
9005971 Goodwin et al. Apr 2015 B2
9079690 Pavlik Jul 2015 B1
9259692 Goodwin et al. Feb 2016 B2
9376655 Larsen Jun 2016 B2
9643133 Goodwin et al. May 2017 B2
9968519 Pavlik May 2018 B2
20010031491 Curtis Oct 2001 A1
20020063347 Lee et al. May 2002 A1
20020131654 Smith et al. Sep 2002 A1
20030036192 Singh Feb 2003 A1
20030077466 Smith et al. Apr 2003 A1
20030119185 Berenson et al. Jun 2003 A1
20040058436 Zhang Mar 2004 A1
20040062140 Cadogan et al. Apr 2004 A1
20040095842 Weetman May 2004 A1
20040134802 Inoue Jul 2004 A1
20040210288 Karapetyan Oct 2004 A1
20050032205 Smith Feb 2005 A1
20050158851 Furey Jul 2005 A1
20050218075 Graetz et al. Oct 2005 A1
20050239199 Kunas et al. Oct 2005 A1
20050242114 Savage et al. Nov 2005 A1
20050272146 Hodge et al. Dec 2005 A1
20050282269 Proulx Dec 2005 A1
20060054557 Hori et al. Mar 2006 A1
20060196501 Bibbo et al. Sep 2006 A1
20060270036 Goodwin et al. Nov 2006 A1
20080068920 Galliher et al. Mar 2008 A1
20080139865 Galliher Jun 2008 A1
20080234654 McCarthy Sep 2008 A1
20080293133 Reid et al. Nov 2008 A1
20090035856 Galliher et al. Feb 2009 A1
20090113753 Pepper May 2009 A1
20090140005 Reichert et al. Jun 2009 A1
20100072216 Voute Mar 2010 A1
20100078395 Shevitz Apr 2010 A1
20100174099 Behkish et al. Jul 2010 A1
20100264100 Rivera Oct 2010 A1
20110013473 Ludwig et al. Jan 2011 A1
20110014689 Gandlur Jan 2011 A1
20110020922 Wuenn et al. Jan 2011 A1
20110070648 Anneren Mar 2011 A1
20120238011 Tuohey et al. Sep 2012 A1
20120313267 Pradel et al. Dec 2012 A1
20130158635 Federico et al. Jun 2013 A1
20150069072 Kelley Mar 2015 A1
20150118753 Brau Apr 2015 A1
20160244710 Wood Aug 2016 A1
20160304825 Larsen et al. Oct 2016 A1
Foreign Referenced Citations (53)
Number Date Country
2214384 Oct 1996 CA
675368 Sep 1990 CH
101696388 Apr 2010 CN
101977673 Feb 2011 CN
200 07 347 Aug 2000 DE
20 2010 013 812 Feb 2011 DE
0 343 885 Nov 1989 EP
0 725 134 Jul 1996 EP
1 602 715 Dec 2005 EP
2 519 020 Jan 1983 FR
2 797 887 Mar 2001 FR
2 799 138 Apr 2001 FR
2 202 549 Sep 1988 GB
50-119561 Sep 1975 JP
58-224683 Dec 1983 JP
61-067476 Apr 1986 JP
62-160899 Jul 1987 JP
S6384483 Apr 1988 JP
2-31825 Feb 1990 JP
02-283274 Nov 1990 JP
03-010675 Jan 1991 JP
03-242297 Oct 1991 JP
05-336957 Dec 1993 JP
06-153902 Jun 1994 JP
70-08264 Jan 1995 JP
07-155170 Jun 1995 JP
82-24076 Sep 1996 JP
2007-511230 Oct 1996 JP
10-099071 Apr 1998 JP
10-150972 Sep 1998 JP
10-313718 Dec 1998 JP
11-502716 Mar 1999 JP
11-299478 Nov 1999 JP
2001-258547 Apr 2002 JP
2002-101867 May 2007 JP
2008-536685 Sep 2008 JP
2 220 917 Jan 2004 RU
9215491 Sep 1992 WO
9630497 Oct 1996 WO
0125394 Apr 2001 WO
0241484 May 2002 WO
05068059 Jul 2005 WO
2005118771 Dec 2005 WO
2006116067 Nov 2006 WO
2007134267 Nov 2007 WO
2008040568 Apr 2008 WO
2008157181 Dec 2008 WO
2009115241 Sep 2009 WO
2009153425 Dec 2009 WO
2011025890 Mar 2011 WO
2011079165 Jun 2011 WO
2012158108 Nov 2012 WO
2013049692 Apr 2013 WO
Non-Patent Literature Citations (3)
Entry
U.S. Appl. No. 60/577,143, filed Jun. 4, 2004, Hodge.
DuPont Medical Packaging, Technical Reference Guide for Medical Packaging, The Miracles of Science, 2002.
Supplementary European Search Report dated Oct. 15, 2012 issued in EP Application No. 06750951.3, filed Apr. 21, 2006.
Related Publications (1)
Number Date Country
20170246603 A1 Aug 2017 US
Continuations (5)
Number Date Country
Parent 15265022 Sep 2016 US
Child 15596952 US
Parent 15041335 Feb 2016 US
Child 15265022 US
Parent 14663068 Mar 2015 US
Child 15041335 US
Parent 14094541 Dec 2013 US
Child 14663068 US
Parent 11385541 Mar 2006 US
Child 14094541 US
Continuation in Parts (1)
Number Date Country
Parent 11112834 Apr 2005 US
Child 11385541 US