The present application relates to suspension systems for vehicles. More specifically, the present application relates to a gas spring for a suspension system.
One embodiment relates to a vehicle having a vehicle body and a vehicle suspension system supporting the vehicle body. The vehicle suspension system has a gas spring including a cylinder, a rod, and an accumulator. The cylinder has a longitudinal axis. The rod is partially disposed within the cylinder and movable relative to the cylinder along the longitudinal axis of the cylinder. The rod and cylinder together at least partially define a chamber having a variable volume therebetween. The chamber receives a first pressurized gas. The accumulator is in communication with the chamber and contains a second pressurized gas therein. The second pressurized gas within the accumulator is held at a threshold pressure that creates a first spring rate opposing relative movement between the rod and cylinder when the first pressurized gas within the chamber is pressurized below the threshold pressure and a second spring rate opposing relative movement between the rod and cylinder when the first pressurized gas within the chamber is pressurized above the threshold pressure. A pressure of the first pressurized gas is at least partially based upon a position of the rod relative to the cylinder.
Another embodiment relates to a vehicle having a vehicle body and a vehicle suspension system supporting the vehicle body. The vehicle suspension system has a gas spring including a cylinder, a rod, and an accumulator. The cylinder defines an inner chamber. The rod is disposed within the cylinder and is movable relative to the rod to adjust a volume of the inner chamber. The accumulator is in communication with the inner chamber. A sensor is attached to at least one of the rod, the cylinder, and the accumulator. The sensor is configured to provide a signal indicative of a ride height of the vehicle suspension system based upon a relative position of the rod and the cylinder.
Yet another embodiment relates to a vehicle having a vehicle body and a vehicle suspension system supporting the vehicle body. The vehicle suspension system has a gas spring having a rod and an accumulator. The rod is partially received within and movable relative to a cylinder. The rod and cylinder collectively define a variable volume chamber therebetween. The accumulator is in gaseous communication with the variable volume chamber. The variable volume chamber receives a first gas and the accumulator receives a second gas fluidly separate from the first gas. The second gas is pressurized to a threshold pressure. The first gas opposes relative movement between the rod and cylinder at different spring rates depending on whether the first gas is defined by a pressure above or below the threshold pressure.
Alternative exemplary embodiments relate to other features and combinations of features as may be generally recited in the claims.
The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, in which:
Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.
According to an embodiment, a vehicle may include a body supported by a suspension system (see, e.g., suspension system 218 as shown in
Referring to
According to an exemplary embodiment, the differential 212 is configured to be connected with a drive shaft of the vehicle, receiving rotational energy from a prime mover of the vehicle, such as a diesel engine. The differential 212 allocates torque provided by the prime mover between half shafts 214 of the axle assembly 210. The half shafts 214 deliver the rotational energy to the wheel-end assemblies 216 of the axle assembly 210. The wheel end assemblies 216 may include brakes, gear reductions, steering components, wheel hubs, wheels, and other features. As the vehicle travels over uneven terrain, the upper and lower support arms 224, 226 at least partially guide the movement of each wheel end assembly 216, and a stopper 228 provides an upper bound to movement of the wheel end assembly 216.
Referring to
During operation, the pump 230 selectively provides gas, under pressure, to the high-pressure gas spring 220 and/or to reservoirs, tanks, accumulators, or other devices. In some contemplated embodiments, two or more high-pressure gas dampers 222 of the vehicle are cross-plumbed via lines 232 (e.g., hydraulic lines) connecting dampers 222 on opposite sides of the axle assembly 210, between dampers 222 in a “walking beam” configuration for a tandem axle, or between dampers 222 on separate axle assemblies of the vehicle (e.g., between dampers located front-to-back, or diagonally located with respect to each other).
Referring to
The rod 314 is configured to translate with respect to the cylinder 312. According to an exemplary embodiment, the rod 314 is coupled to or comprises a piston (see, e.g., rod 414 as shown in
The cylinder 312 of the gas spring 310 is preferably cylindrical due to structural benefits associated with cylindrical pressure vessels. However, in other contemplated embodiments, the cylinder 312 may be substituted for a body having another geometry. In some contemplated embodiments, the chamber may be formed in, or at least partially formed in the rod 314. In one such embodiment, the chamber spans both the cylinder 312 and at least a portion of the interior of the rod 314.
In some embodiments, the gas spring 310 includes at least one port 322 (e.g., aperture, inlet) that may be opened to allow gas (e.g., inert gas) to be provided to or from the chamber. The chamber of the gas spring is substantially sealed when the port 322 is not open. In some embodiments, the port 322 may be coupled to an accumulator (see, e.g., accumulator 416 as shown in
In some embodiments, the gas spring 310 further includes at least one port 324 that may be opened to allow a pressurized reservoir of a higher or a lower pressure (see generally accumulator 416 as shown in
In other contemplated embodiments, the gas spring 310 is coupled directly to a pump (see, e.g., pump 230 as shown in
Referring now to
In some embodiments, when the valve 428 is open, the first chamber 418 is in gaseous communication with the second chamber 420 such that a continuous body of gas extends between the two chambers 418, 420. No intermediate hydraulic fluid or mechanical element is included to transfer energy from the first chamber 418 to the second chamber 420 or vice versa. In some such embodiments, the only hydraulic fluid associated with the gas spring assembly 410 is a thin film between the rod and cylinder that moves during compression or extension of the rod 414. Use of the continuous body of gas for gaseous communication between the first and second chambers 418, 420 is intended to reduce frictional losses associated with energy transfer between the first and second chambers 418, 420, as may otherwise occur with hydraulic or mechanical intermediate elements. However, in other contemplated embodiments, hydraulic or mechanical intermediate elements may be used.
During use of the gas spring assembly 410, in some embodiments, the bladder 426 is inflated to an initial pressure. As the rod 414 and cylinder 412 are moved together, such as when the associated vehicle drives over a bump, gas in the chamber 418 compresses, providing a first spring rate for the gas spring assembly 410. In such embodiments, the pressure of the gas in the first chamber 418 is communicated to the accumulator 416 via the gas transfer conduit 422. If the pressure of the gas communicated from the first chamber 418 is below the initial pressure of the bladder 426, the gas spring assembly 410 will respond to the bump with the first spring rate. However, if the pressure of the gas communicated from the first chamber 418 exceeds the initial pressure in the bladder 426, then the bladder 426 will compress, increasing the effective volume of the second chamber 418, which provides a second spring rate to the gas spring assembly 410.
In some such embodiments, a pump (see, e.g., pump 230 as shown in
Referring again to
In some embodiments, a floating, annular piston 438 is used to separate the hydraulic fluid in the internal volume 432 from the gas of the chamber 418. Standard or conventional hydraulic seals 440 may be used with respect to the annular piston 438 and port 430 of the internal volume 432 to prevent leakage of the hydraulic fluid. In some embodiments, standard accumulator seals are used to seal the annular piston 438. According to an exemplary embodiment, the internal volume 432 surrounds at least a portion of the first chamber 418 (for gas) within the gas spring assembly 410. As such, the hydraulic seals 440 serve to seal the gas within the gas spring assembly 410.
According to an exemplary embodiment, the gas spring assembly further includes a sensor 442 integrated with the gas spring assembly 410 and configured to sense the relative configuration of the rod 414 and cylinder 412. In some embodiments, the sensor 442 provides a signal (e.g., digital output) that is indicative of the ride height of the associated suspension system (see, e.g., suspension system 218 as shown in
Referring now to
In some embodiments, the accumulator 610 additionally includes a transfer tube 628 extending between the first and second sections 614, 616. The transfer tube 628 allows for controlled transfer of gas from the second section 616 to the first section 614, or vice versa. A restrictor 630 or valve may be positioned along the transfer tube 628 to control the flow of gas through the transfer tube 628.
In some embodiments that include the transfer tube 628, 712, the two sections 614, 616 of the accumulator 610 are in gaseous communication at equilibrium (e.g., steady state). Equal pressure acts on both sides of the piston assembly 618, 716. But, due to the unequal cross-sections, a net force biases the piston assembly 618, 716 toward the first section 614. At standard operating pressures of the gas spring, the equilibrium pressure supplies a net force sufficient to overcome forces of gravity and friction acting on the piston assembly 618, 716.
During an impulse loading event, the spring compresses and rapidly communicates increased gas pressure to the first section 614 of the accumulator 610. However, due in part to the setting of the restrictor 630 and drag in the transfer tube 628, 712, the pressure in the second section 616 of the accumulator 610 does not increase as rapidly. As such, with a sufficient pressure differential between the first and second sections 614, 616, the piston assembly 618, 716 moves from the initial position. The volume of the first section 614 increases and the volume of the second section 616 decreases, compressing the gas in the second section 616, which results in a different spring rate (see, e.g., point of inflection 522 as shown in
According to an exemplary embodiment, the second spring rate and threshold at which the bias of the piston assembly 618, 716 is overcome is tunable by changing the area ratio of the piston assembly 618, 716 (i.e. chamber cross-sections). In some contemplated embodiments, the setting of the restrictor 630 controls damping to the accumulator 610 and overall gas spring assembly, which may be used with or without a separate damper (see, e.g., damper 222 as shown in
In other contemplated embodiments, the separate body of gas 626 in the second section 616 may be set to an initial pressure, such as by a pump (see, e.g., pump 230 as shown in
The construction and arrangements of the gas spring assembly, as shown in the various exemplary embodiments, are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. Some elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process, logical algorithm, or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention.
This is a continuation of application Ser. No. 15/631,800, filed Jun. 23, 2017, which is a continuation of application Ser. No. 14/671,650, filed Mar. 27, 2015, which is a continuation of application Ser. No. 14/305,812, filed Jun. 16, 2014, now U.S. Pat. No. 8,991,834, which is a continuation of application Ser. No. 13/908,785, filed Jun. 3, 2013, now U.S. Pat. No. 8,764,029, which is a continuation of application Ser. No. 12/872,782, filed Aug. 31, 2010, now U.S. Pat. No. 8,465,025, which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3614125 | Sinclair et al. | Oct 1971 | A |
3661060 | Bowen | May 1972 | A |
3941403 | Hiruma | Mar 1976 | A |
4159105 | Vander Laan et al. | Jun 1979 | A |
4430048 | Fritsch | Feb 1984 | A |
4515516 | Perrine et al. | May 1985 | A |
4616810 | Richardson et al. | Oct 1986 | A |
4720085 | Shinbori et al. | Jan 1988 | A |
4743000 | Karnopp | May 1988 | A |
4958850 | Buma et al. | Sep 1990 | A |
4971353 | Burna | Nov 1990 | A |
5071158 | Yonekawa | Dec 1991 | A |
5131676 | Kii | Jul 1992 | A |
5150917 | Kawabata | Sep 1992 | A |
5152547 | Davis | Oct 1992 | A |
5160161 | Tsukamoto | Nov 1992 | A |
5193845 | Yokote | Mar 1993 | A |
5295563 | Bennett | Mar 1994 | A |
5326229 | Collins | Jul 1994 | A |
5342023 | Kuriki | Aug 1994 | A |
5400880 | Ryan | Mar 1995 | A |
5539639 | Devaud et al. | Jul 1996 | A |
5957252 | Berthold | Sep 1999 | A |
6086060 | Berthold | Jul 2000 | A |
6161845 | Shono et al. | Dec 2000 | A |
6168171 | Shono | Jan 2001 | B1 |
6254067 | Yih | Jul 2001 | B1 |
6305512 | Heinz et al. | Oct 2001 | B1 |
6446944 | Ward | Sep 2002 | B1 |
6516914 | Andersen et al. | Feb 2003 | B1 |
6561718 | Archer et al. | May 2003 | B1 |
6575484 | Rogala et al. | Jun 2003 | B2 |
6622397 | Knoble | Sep 2003 | B1 |
6764085 | Anderson | Jul 2004 | B1 |
6880684 | Evans et al. | Apr 2005 | B1 |
6883815 | Archer | Apr 2005 | B2 |
6918481 | Quigley et al. | Jul 2005 | B2 |
6918721 | Venton-Walters et al. | Jul 2005 | B2 |
6938749 | Quigley et al. | Sep 2005 | B1 |
6974003 | Acker et al. | Dec 2005 | B1 |
6976688 | Archer et al. | Dec 2005 | B2 |
7108253 | Venton-Walters et al. | Sep 2006 | B2 |
7124865 | Turner et al. | Oct 2006 | B2 |
7163208 | Brandenburger | Jan 2007 | B2 |
7207582 | Siebers et al. | Apr 2007 | B2 |
7240906 | Klees | Jul 2007 | B2 |
7377523 | Schedgick | May 2008 | B2 |
D572642 | Steckling et al. | Jul 2008 | S |
7472914 | Anderson et al. | Jan 2009 | B2 |
7475895 | Stacey | Jan 2009 | B2 |
7497308 | McAndrews | Mar 2009 | B2 |
7497452 | Schedgick | Mar 2009 | B2 |
7621580 | Randjelovic et al. | Nov 2009 | B2 |
7963204 | Venton-Walters et al. | Jun 2011 | B2 |
8333390 | Linsmeier et al. | Dec 2012 | B2 |
8376077 | Venton-Walters | Feb 2013 | B2 |
8448432 | Bresie | May 2013 | B2 |
8465025 | Venton-Walters et al. | Jun 2013 | B2 |
8596648 | Venton-Walters et al. | Dec 2013 | B2 |
8757636 | Kasuga et al. | Jun 2014 | B2 |
8764029 | Venton-Walters et al. | Jul 2014 | B2 |
8801017 | Ellifson et al. | Aug 2014 | B2 |
8801318 | Knoble et al. | Aug 2014 | B2 |
8821130 | Venton-Walters et al. | Sep 2014 | B2 |
20010033047 | Beck et al. | Oct 2001 | A1 |
20020030311 | Beck et al. | Mar 2002 | A1 |
20030227113 | Jensen | Dec 2003 | A1 |
20050001401 | Heyring et al. | Jan 2005 | A1 |
20050062249 | Lemmens et al. | Mar 2005 | A1 |
20060013717 | Beck | Jan 2006 | A1 |
20060055129 | Amano | Mar 2006 | A1 |
20060119064 | Mizuno et al. | Jun 2006 | A1 |
20060192361 | Anderson et al. | Aug 2006 | A1 |
20090174158 | Anderson et al. | Jul 2009 | A1 |
20090294231 | Carlson et al. | Dec 2009 | A1 |
20110042869 | Runkel | Feb 2011 | A1 |
20110218707 | Inoue et al. | Sep 2011 | A1 |
20120234638 | Ellifson et al. | Sep 2012 | A1 |
20130249175 | Ellifson | Sep 2013 | A1 |
20140131969 | Rowe et al. | May 2014 | A1 |
20140251742 | Dillman et al. | Sep 2014 | A1 |
20140255136 | Malcolm et al. | Sep 2014 | A1 |
20140265203 | Zuleger et al. | Sep 2014 | A1 |
20140326555 | Ellifson et al. | Nov 2014 | A1 |
20140334956 | Venton-Walters et al. | Nov 2014 | A1 |
Number | Date | Country |
---|---|---|
1 219 856 | Jul 2002 | EP |
1 598 124 | Nov 2005 | EP |
WO-9014528 | Nov 1990 | WO |
WO-9105180 | Apr 1991 | WO |
Entry |
---|
International Search Report for International Application No. PCT/US2011/049642, dated Jun. 8, 2012, 6 pages. |
Written Opinion regarding International Application No. PCT/US2011/049642, dated Jun. 8, 2012, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20190337348 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15631800 | Jun 2017 | US |
Child | 16515631 | US | |
Parent | 14671650 | Mar 2015 | US |
Child | 15631800 | US | |
Parent | 14305812 | Jun 2014 | US |
Child | 14671650 | US | |
Parent | 13908785 | Jun 2013 | US |
Child | 14305812 | US | |
Parent | 12872782 | Aug 2010 | US |
Child | 13908785 | US |