The present invention is generally related to the field of gas springs. More particularly, the present invention is related to a method and apparatus for altering the travel settings of gas springs and allowing equalization between the various gas chambers of a gas spring. Further included in the invention is a valve mechanism for controlling the fluid communication between the various gas chambers of the gas spring with turning of an adjustment knob or lever. The field of technology of these inventions is related to the technology described in, for example, U.S. Pat. Nos. 6,135,434 and 6,311,962 whose contents are incorporated by reference in their entirety herein.
Conventional automotive vehicles typically have separate suspension springs and separate simple shock absorbers. Simple shock absorbers, which provide damping only, are typically oil-filled cylinders within which a vented piston is mounted. The piston is connected to a shaft which extends out of one end of the cylinder. The outer end of the shaft is mounted to one point on the vehicle; the other end of the cylinder is mounted to another point on the vehicle so that the shock is parallel to the action of the suspension spring.
Another type of shock absorber, which is the type commonly used with motorcycles, off-road vehicles, competition automotive vehicles and off-road bicycles, combines at least part of the suspension function and the shock absorbing function in one unit. This second type of shock absorber commonly uses a spring unit to provide all or part of the suspension function coupled with a damping unit to provide the damping function. Conventional shock absorber designs commonly incorporate an external coil spring, an internal air spring, or an internal bladder to provide the suspension function.
The present invention is generally related to the field of gas springs. In one embodiment, a gas spring assembly for a suspension system includes a tube; a piston assembly slidably displaceable relative to the tube, the piston assembly separating the tube into a positive spring gas chamber and a negative spring gas chamber; and a valve mechanism configured to permit gas flow between the positive and negative spring gas chambers when the gas pressure in the negative spring gas chamber exceeds the gas pressure in the positive gas spring chamber.
In another embodiment, a valve mechanism for a gas spring suspension system having positive and negative spring gas chambers includes a gas passageway extending between the positive and negative spring gas chambers; a valve seat; and a valve displaced toward the valve seat to prevent gas flow through the gas passageway when the pressure in the positive spring gas chamber exceeds the pressure in the negative spring gas chamber, the valve displaced away from the valve seat to permit gas flow through the gas passageway when the pressure in the negative spring gas chamber exceeds the pressure in the positive spring gas chamber.
In another embodiment, a valve assembly for a suspension system includes a housing having a plurality of housing fluid flow paths through a housing wall thereof; a fluid conduit disposed adjacent the housing and having at least one conduit fluid flow path through a conduit wall thereof; a seal, located between two of the housing fluid flow paths and isolating a surface of the conduit wall from a surface of the housing wall; a first position wherein the conduit fluid flow path is in fluid communication with a first of the housing fluid flow paths and isolated from a second of the housing fluid flow paths; and a second position wherein the conduit fluid flow path is in fluid communication with the second of the housing fluid flow paths and isolated from the first of the housing fluid flow paths.
In another embodiment, a multi-position valve assembly includes a first tube having an axial fluid flow path through an interior thereof and a first aperture through a first tube wall and in communication with the flow path; a second tube substantially coaxially disposed relative to the first tube and having a plurality of second apertures through a second tube wall, at least two second apertures being spaced at a first distance apart, the first and the second tubes forming an annulus there between; a plurality of seals disposed in the annulus, at least one each of the seals being located on each side of each of the second apertures thereby forming a discreet annular chamber for each of the second apertures; a first position wherein the first aperture is in fluid communication with a first of the chambers and a second position wherein the first aperture is in fluid communication with a second of the chambers and wherein a distance between the first and second positions is less than half of the first distance.
In another embodiment, a gas spring suspension system includes a tube; a piston assembly disposed within and movable relative to the tube; a first spring gas chamber and a second spring gas chamber; and a valve mechanism selectively permitting gas flow between the first and second spring gas chambers.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Finally, the following symbolic conventions have been used throughout the drawings where applicable:
a) dense cross-hatching indicates higher pressures than less-dense cross-hatching;
b) filled circles represent closed valves or openings.
With reference to the drawings, an exemplary embodiment of a gas spring with travel control will now be described.
In particular, these figures depict, in a static state (i.e., at rest), a gas spring 10′ in a variety of travel mode positions. As used herein, “gas spring” may refer to, at least, a rear shock or a subcomponent of a front fork of a bicycle. However, the invention is not so limited. As will be further described, the gas spring will typically comprise a gas spring having a gas tube divided into positive and negative gas chambers by a piston.
As previously mentioned, the most basic form of the gas spring 10′ is shown in
A hollow valve rod 40 having a hollow interior portion or fluid path 41 therein is provided within the internal gas chamber 20 and parallel to the longitudinal axis of the gas spring body 15. As used herein, “fluid” refers to a gas, such as air or nitrogen. The hollow valve rod 40 is open at both ends and provided with check valve 50a and check valve 50b to selectively seal off the fluid path 41 so that fluid may only leave the fluid path 41 through check valve 50a or check valve 50b, i.e., fluid may not enter fluid path 41 through check valve 50a or check valve 50b.
Accordingly, to accelerate gas flow during equalization stages, the hollow valve rod 40 is also provided with at least one through hole 60 (only one of which is consistently shown herein for clarity purposes and not as an intent to limit the invention in any way), typically located in a depression 61 (see
Through any conventional mechanism (not shown), such as a screw mechanism, connected to a conventional adjuster in the form of a knob K (
A moveable piston assembly 100 is also provided within the internal gas chamber 20 and divides the internal gas chamber 20 into first variable volume gas chamber 22 and second variable volume gas chamber 27, respectively. Moveable piston assembly 100 is rigidly mounted to lower leg L of fork F and mounted for relative movement with respect to hollow valve rod 40 which is rigidly mounted to upper leg U of fork F. As moveable piston assembly 100 longitudinally moves within internal gas chamber 20 along hollow valve rod 40, one of gas chambers 22, 27 will get larger and the other of gas chamber 22, 27 will get smaller, depending on the direction of movement of moveable piston assembly 100. Moveable piston assembly 100 primarily includes the main piston body 110 and collar portion 115. Moveable piston assembly 100 also includes vent 109, for reasons to be described later. Collar portion 115 of the moveable piston assembly 100 eventually leaves the gas spring body 15 and, in the case of a fork, leaves upper tube U through a seal (not shown) and is affixed to the lower end of lower tube L of fork F (
As previously mentioned, hollow valve rod 40 and moveable piston assembly 100 are mounted for relative movement with respect to each other and typically that would involve the ability of hollow valve rod 40 to collapse into a bore within the center of the main piston body 110 (See
Main piston body 110 has an upper surface 110a and a lower surface 110b. The relative sizes of the surface areas of these two surfaces of the main piston body 110 may be such that the lower surface 110b of the main piston body 110 may have a smaller surface area than the upper surface 110a. Typically, the ratio of upper surface 110a area [π(A1)]2 to lower surface 110b area (π[(A1)2−S2]) is approximately 1.5:1 (the attached schematic figures are therefore, not to scale). Accordingly, when the gas spring 10 is in static equilibrium and the forces on both sides of the moveable piston assembly 100 are equal, according to the formula P=F/A, due to the fact that the surface areas on each side of moveable piston assembly 100 are different, the pressure inside the second gas chamber 27 may be higher than the pressure in the first gas chamber 22.
The basic pressure equalization operation of the gas spring 10′ will now be described with reference to
Whenever the portion of the hollow valve rod 40 including the through hole 60 travels into the bore of the main piston body 110 to the point where the o-ring 116 overlaps depression 61 and through hole 60 (
A. The gas in first chamber 22 increases in pressure and is forced from first gas chamber 22 into through hole 60 and fluid path 41 of the hollow valve rod 40. Since check valve 50a only allows fluid flow out of fluid path 41, the gas then exits the hollow valve rod 40 by opening check valve 50b and enters second gas chamber 27 (whose pressure has temporarily decreased) via vent 109 in the moveable piston assembly 100 (recall this a simplified schematic representation). Accordingly, the pressure in the second gas chamber 27 will increase; and
B. With an increase in pressure in the second gas chamber 27 due to the pumping, an upward force will result on the lower surface 110b of the main piston body 110 and the moveable piston assembly 100 will move upward into the new equilibrium point in a short travel mode position (
In particular, while it may seem that having a large or infinite number of travel positions between long and short may be optimal, a rider may not need such a wide range of positions. Accordingly, another embodiment involves incorporating a discrete number of predetermined travel mode positions to the gas spring, preferably: long travel (L), medium travel (M), and short travel (S) modes.
Additionally, when the gas spring 10′ has been incorporated in a front fork of a bicycle, the typical distance between through hole 60 in the long travel mode position and short travel mode position may be between 40-45 mm, but can vary widely between manufacturers. Using the maximum available thread pitch that would not mechanically bind, it may still take a plurality of complete turns, such as three, of the adjustment knob K to bring the radial hole from the long travel mode position to the short travel mode position for a 45 mm travel change. Having to make a plurality of complete turns during a ride may be impractical for a rider. Accordingly, another embodiment of the invention additionally involves the ability to make drastic incremental travel adjustments with only a small angular turn of an adjustment knob; preferably 90°, and typically no more than 240° of rotation (since more than 240° would require a release and re-grip of the knob).
The travel mode adjust of another embodiment of the invention may be considered a much more non-linear or non-proportional travel adjust than those of the gas spring 10′. This is depicted by the graph of
As schematically shown in the static equilibrium views of
The structure of the valve rod assembly 240 is more clearly shown in
Furthermore, as with the gas spring 10′, inner valve rod 255 may rotate and move longitudinally to cause longitudinal movement of the at least one valve rod bore 257 relative to valve tube 242 (compare
Each valve tube 245 is trapped in between the outer and inner valve tubes 242, 255 by an outer seal 271 and an inner seal 270. These seals will typically be in the form of o-rings. Each valve tube 245 will also have one or more through bores 280a, 280c, preferably, corresponding to through holes 260a, 260c. Because valve tubes 245 are smaller than the space between the inner valve rod 255 and the outer valve rod 242, gas gaps 285a, 285c that create a venting passageway are formed there between. Finally, as previously mentioned, in between inner seals 270 is valve ring 246. Because valve ring 246 is smaller than the space between the inner valve rod 255 and the outer valve rod 242, a gas gap 285b that creates a venting passageway is formed there between also. However, unless the valve rod bore 257 is aligned to provide fluid communication with a particular gas gap, that gas gap is sealed off from the fluid path 241.
Thus, for example, in
For the examples in
This operation is shown schematically in
In
In
In
This all is summarily showed in
As previously mentioned, through holes 260 need not be located in depressions in the way that through hole 60 are. Nor, do they have to be larger than o-ring 116. Rather, it is possible that as shown in simplified
Finally,
Thus, in conclusion, by:
a) providing a valve rod assembly having an internal fluid path;
b) placing the gas chamber in fluid communication with the fluid path at a plurality of longitudinal positions corresponding to a plurality of different travel modes; and
c) using a valve rod having at least one valve bore to place only one of the longitudinal positions in fluid communication with the fluid path, a method of changing the travel mode of a gas spring having a gas chamber filled with a gas may be provided.
Additionally, it is possible that in the method, the step of using a valve rod may include the step of rotating the valve rod less than one turn.
Additionally, it is further possible in the method that the step of rotating the valve rod moves the valve bore a distance substantially less than the distance between the plurality of different travel modes.
Additionally, it is further possible in the method that the step of rotating the valve rod and moving the valve bore also includes moving the valve bore longitudinally.
The above description is given in reference to exemplary embodiments of an improved gas spring control for a suspension. However, it is understood that many variations are apparent to one of ordinary skill in the art from a reading of the above specification and such variations are within the spirit and scope of the instant invention as defined by the following appended claims.
This application is a continuation application of and claims priority to and benefit of co-pending U.S. patent application Ser. No. 16/165,875 filed on Oct. 19, 2018, entitled “GAS SPRING WITH TRAVEL CONTROL” by Joseph Franklin et al., having Attorney Docket No. FOX-0014.P1.CON3, assigned to the assignee of the present application, and incorporated herein, in its entirety, by reference. The application Ser. No. 16/165,875 is a continuation application of and claims priority to and benefit of U.S. patent application Ser. No. 15/237,371 filed on Aug. 15, 2016, no U.S. Issued U.S. Pat. No. 10,132,379, entitled “GAS SPRING WITH TRAVEL CONTROL” by Joseph Franklin et al., having Attorney Docket No. FOX-0014.P1.CON2, assigned to the assignee of the present application, and incorporated herein, in its entirety, by reference. The application Ser. No. 15/237,371 is a continuation application of and claims priority to and benefit of U.S. patent application Ser. No. 14/336,929 filed on Jul. 21, 2014, now U.S. Issued U.S. Pat. No. 9,415,653, entitled “GAS SPRING WITH TRAVEL CONTROL” by Joseph Franklin et al., having Attorney Docket No. FOX-0014.P1.CON, assigned to the assignee of the present application, and incorporated herein, in its entirety, by reference. The application Ser. No. 14/336,929 is a continuation application of and claims priority to and benefit of U.S. patent application Ser. No. 12/176,160, now abandoned, filed on Jul. 18, 2008 entitled “GAS SPRING WITH TRAVEL CONTROL” by Joseph Franklin et al., having Attorney Docket No. FOXF/0014.P1, assigned to the assignee of the present application, and incorporated herein, in its entirety, by reference. The application Ser. No. 12/176,160 is a continuation-in-part and claims priority of U.S. patent application Ser. No. 10/237,333 (Atty. Dock. No. FOXF/0010), now U.S. Issued U.S. Pat. No. 7,703,585, filed Sep. 5, 2002, which claims benefit of U.S. provisional patent application Ser. No. 60/392,802, filed Jun. 28, 2002, and U.S. provisional patent application Ser. No. 60/391,991, filed Jun. 25, 2002. Each of the aforementioned related patent applications is herein incorporated by reference in its entirety. The application Ser. No. 12/176,160 is also a continuation-in-part and claims priority of U.S. patent application Ser. No. 11/560,403 (Atty. Dock. No. FOXF/0011), now U.S. Issued U.S. Pat. No. 8,464,850, filed Nov. 16, 2006, which is herein incorporated by reference in its entirety The application Ser. No. 12/176,160 is also a continuation-in-part and claims priority of U.S. patent application Ser. No. 11/372,707 (Atty. Dock. No. FOXF/0014), now abandoned, filed Mar. 10, 2006, which claims benefit of U.S. provisional patent application Ser. No. 60/667,495, filed Apr. 1, 2005. Each of the aforementioned related patent applications is herein incorporated by reference in its entirety. The application Ser. No. 12/176,160 also claims benefit of U.S. provisional patent application Ser. No. 61/038,015 (Atty. Dock. No. FOXF/0022L), filed Mar. 19, 2008, which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61038015 | Mar 2008 | US | |
60667495 | Apr 2005 | US | |
60392802 | Jun 2002 | US | |
60391991 | Jun 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16165875 | Oct 2018 | US |
Child | 17195216 | US | |
Parent | 15237371 | Aug 2016 | US |
Child | 16165875 | US | |
Parent | 14336929 | Jul 2014 | US |
Child | 15237371 | US | |
Parent | 12176160 | Jul 2008 | US |
Child | 14336929 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11560403 | Nov 2006 | US |
Child | 12176160 | US | |
Parent | 11372707 | Mar 2006 | US |
Child | 11560403 | US | |
Parent | 10237333 | Sep 2002 | US |
Child | 12176160 | US |