The present invention relates to a gas storage cartridge of a gas storage canister, and more particularly to a modular gas storage cartridge, which a plurality of gas storage cartridges are stacked over each other and accommodated within a gas storage canister.
A fuel cell is a device that converts the chemical energy from a hydrogen-containing fuel into electricity through a chemical reaction with air. Consequently, the fuel cell is categorized as a new energy source. The hydrogen-containing fuel used in the fuel cell includes any type of hydrocarbon such as natural gas, methanol, ethanol (alcohol), product from water hydrolysis, marsh gas, or the like.
The hydrogen gas is usually filled into a gas storage canister with metal hydride, so that the hydrogen gas is adsorbed and stored by the metal hydride. For using the hydrogen gas, the gas storage canister should be properly heated to release the hydrogen gas to the application device. Consequently, the fuel cell manufacturers make efforts in designing novel gas storage canisters for providing more stable and sustained hydrogen gas.
Conventionally, the gas storage material (e.g. metal hydride) is directly accommodated within a canister body of the gas storage canister. Since the gas storage material is usually in a powdery form and the gas storage material is accommodated within a single receptacle of the canister body, if the volume of the gas storage material is too large, the gas storage material fails to be uniformly and stably heated. Under this circumstance, the efficiency of releasing the gas (e.g. the hydrogen gas) from the gas storage material is deteriorated. For solving these drawbacks, the researchers are devoted to the methods of partitioning the gas storage material within the gas storage canister. Unfortunately, these methods are unsatisfied because the thermal expansion of the gas storage material may result in deformation of the partition articles. Under this circumstance, the gas storage material may be leaked to and stacked over other partition layers or a non-uniform heating problem may occur, so that the performance of the gas storage canister is impaired.
Moreover, it is inconvenient to fill the gas storage material into the gas storage canister because a special jig tool is indispensable. The process of filling the gas storage material is complicated, and needs to be performed by a professional technician. In addition, a difference of gas storage material between any two different filling processes is easily generated. Under this circumstance, the operating performance of the gas storage canister is adversely affected.
A first object of the present invention provides a modular gas storage cartridge comprising a sealed cartridge unit and a gas-guiding channel. The gas storage cartridge is used for accommodating a gas storage material. Since the gas storage cartridge is modularized to facilitate production, assembly and application, the problems encountered from the prior art will be obviated.
A second object of the present invention provides a simplified gas storage canister. After the modular gas storage cartridges are successively stacked over each other and accommodated within the inner space of the gas storage canister, the gas storage canister is assembled without difficulty.
A third object of the present invention provides a gas storage cartridge which is easily assembled and stably positioned. After several modular gas storage cartridges are successively stacked over each other and accommodated within the inner space of the gas storage canister, these gas storage cartridges are aligned with each other and positioned by simple positioning elements or positioning structures.
A fourth object of the present invention provides a gas storage cartridge with a compartment structure. The compartment structure is accommodated within the modular gas storage cartridge and has a plurality of compartments for storing a predetermined amount of gas storage material. Consequently, the gas storage material can be optimally distributed and uniformly heated, and the structural strength of the gas storage cartridge is enhanced.
A fifth object of the present invention provides a gas storage cartridge with a gap. Due to the gap between the top and inner peripheries of the gas storage cartridge, the possibility of resulting in deformation of the partition articles will be minimized.
In accordance with an aspect of the present invention, there is provided a gas storage canister. The gas storage canister includes a plurality of gas storage cartridges. Each of the gas storage cartridges includes a sealed cartridge unit for storing a gas storage material. The gas storage cartridge is defined by a first slab, a peripheral wall, and a second slab. At least one gas-guiding channel is accommodated within the receptacle of the gas storage cartridge. The first slab has a first gas inlet/outlet port and the second slab has a second gas inlet/outlet port aligned with the gas-guiding channel. Consequently, a gas is guided into the receptacle through the gas-guiding channel to be adsorbed by the gas storage material within the receptacle of the gas storage cartridge. In addition, the gas released from the gas storage material can be guided to the first gas inlet/outlet port and the second gas inlet/outlet port through the gas-guiding channel.
The gas-guiding channel includes a first connecting part, a second connecting part, and a filtering layer. The first connecting part has at least one gas-guiding hole. The first connecting part and second connecting part may be coupled with each other. The filtering layer is sheathed around a tube wall of the first connecting part. The first connecting part is a porous material. Moreover, the gas storage cartridge further includes a compartment structure. The compartment structure includes a plurality of compartments, which are defined by a plurality of partition plates vertical to the first slab. Each of the compartments stores a predetermined amount of gas storage material.
By means of the present technology, the gas storage canister can be easily assembled by successively accommodating the stacked gas storage cartridges within the canister body without the need of using the complicated assembling process. Since the gas storage material has been precisely and previously filled into each modular gas storage cartridge, the difference of gas storage material between any two different filling processes will be largely reduced, the assembling complexity and difficulty will be reduced, and the possibility of resulting in deformation will be minimized. By using the gas storage canister of the present invention, each modular gas storage cartridge is uniformly and stably heated. Consequently, the efficiency of charging or releasing the gas (e.g. the hydrogen gas) is enhanced. Since there is a buffering space between any two adjacent stacked gas storage cartridges, even if the gas storage material is suffered from thermal expansion, the deformation of the canister body will be minimized. Consequently, the safety of operating the canister body is enhanced.
In the modular gas storage cartridge of the present invention, a predetermined amount of gas storage material is accommodated within the compartment of the compartment structure, so that the gas storage material is locally distributed. Consequently, during operation of the fuel cell system, the gas storage canister allows the external heat to be uniformly conducted to the compartments of all compartment structures. Since the heat applied to the inner portion and the outer portion of the gas storage material are not obviously distinguished during the heating stage, the released gas can be outputted more uniformly and stably. Under this circumstance, the operating efficacy of the present invention is enhanced. Moreover, since the compartment structure is accommodated within the receptacle of the gas storage cartridge and the partition plate is effective to reinforce the structural strength of the gas storage cartridge, the operation of the gas storage canister is more stable, and the working efficiency of the fuel cell system is enhanced. In such way, the gas storage cartridge is modularized to facilitate production, assembly and application, so that the industrial utilization is enhanced.
The above contents of the present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
Furthermore, at least one gas-guiding channel 3 runs through the receptacle P of the gas storage cartridge 2. Corresponding to the gas-guiding channel 3, the first slab 21 has a first gas inlet/outlet port 211 and the second slab 23 has a second gas inlet/outlet port 231. Through the gas inlet/outlet ports 211 and 231, a supply gas can be introduced into the gas-guiding channel 3 and guided to and adsorbed by the gas storage material, which is accommodated within the gas storage cartridge 2. In addition, the gas released from the gas storage material can be guided to the gas inlet/outlet ports 211 and 231 through the gas-guiding channel 3.
After the gas storage cartridges 2 are successively stacked over and accommodated within the inner space 10 of the canister body 1, at least one positioning element 4 is penetrated through the gas-guiding channels 3 of corresponding gas storage cartridges 2 (see
In this embodiment, the gas-guiding channel 3 comprises a first connecting part 31, a second connecting part 33, and a filtering layer 34. The first connecting part 31 is a hollow tube. At least one gas-guiding hole 32 is formed in the tube wall of the first connecting part 31. A first end of the first connecting part 31 is a sustaining end 311. A second end of the first connecting part 31 is an enlarged end 312. After the sustaining end 311 of the first connecting part 31 is penetrated through the first gas inlet/outlet port 211 and the receptacle P of the gas storage cartridge 2, the sustaining end 311 is sustained against the inner surface of the second slab 23. The enlarged end 312 of the first connecting part 31 is in contact with the outer periphery of the first gas inlet/outlet port 211 of the first slab 21.
The second connecting part 33 comprises a coupling end 331 and an enlarged end 332. After the coupling end 331 of the second connecting part 33 is penetrated through the second gas inlet/outlet port 231 of the second slab 23, the coupling end 331 is fitted into the sustaining end 311 of the first connecting part 31. The enlarged end 332 of the second connecting part 33 is in contact with the outer periphery of the second gas inlet/outlet port 231 of the second slab 23.
The filtering layer 34 is sheathed around the tube wall of the first connecting part 31. In a case that the gas flows through the gas-guiding channel 3, the gas-guiding hole 32 is blocked by the filtering layer 34. Under this circumstance, the gas storage material will not be leaked out from the gas-guiding hole 32, and thus the isolating and filtering efficacy will be enhanced.
Moreover, a compartment structure 5 is disposed within the receptacle P of respective gas storage cartridge 2. The compartment structure 5 comprises a plurality of compartments 52. These compartments 52 are defined by partition plates 51 which are vertical to the first slab 21. Alternatively, these compartments 52 may be defined by parallel partition plates. Each of the compartments 52 is used for storing a predetermined amount of gas storage material. The partition plates 51 are made of a thermally-conductive material, so that the efficacy of heating the gas storage material is enhanced. In this embodiment, the compartment structure 5 is a honeycomb-like structure. The shape of the compartment structure 5 is not restricted. For example, the compartment structure 5 is a rectangular structure, a square structure, a polygonal structure, an irregular shape or a circular structure. The special profile of the compartment structure 5 can reinforce the structural strength of the gas storage cartridge 2. Consequently, when the gas storage material is suffered from thermal expansion, the deformation of the gas storage cartridge 2 is minimized.
While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.
Number | Date | Country | Kind |
---|---|---|---|
099145542 A | Dec 2010 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4032457 | Matchett | Jun 1977 | A |
4667815 | Halene | May 1987 | A |
4819718 | Ishikawa et al. | Apr 1989 | A |
5076430 | Philpot | Dec 1991 | A |
5953922 | Stetson et al. | Sep 1999 | A |
6626323 | Stetson et al. | Sep 2003 | B2 |
6706183 | Ito et al. | Mar 2004 | B2 |
6709497 | Myasnikov et al. | Mar 2004 | B2 |
6742650 | Yang et al. | Jun 2004 | B2 |
6991770 | Suzuki et al. | Jan 2006 | B2 |
7211228 | Suzuki et al. | May 2007 | B2 |
7431756 | Myasnikov et al. | Oct 2008 | B2 |
7947119 | Golz et al. | May 2011 | B2 |
20030019765 | Yang et al. | Jan 2003 | A1 |
20030215684 | Yang et al. | Nov 2003 | A1 |
20040020844 | Rynbeck | Feb 2004 | A1 |
20100219087 | Fujita et al. | Sep 2010 | A1 |
20100224066 | Ophir et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
1405484 | Mar 2003 | CN |
112008001274 | Mar 2010 | DE |
2931142 | Nov 2009 | FR |
02061249 | Aug 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20120160711 A1 | Jun 2012 | US |