The following description relates generally to a precision inertial navigation system (INS) and particularly to an INS without gimbals.
Inertial navigation systems (INS) are used in civil and military aviation, missiles and other projectiles, submarines and space technology as well as a number of other vehicles. INSs measure the position and attitude of a vehicle by measuring the accelerations and rotations applied to the system's inertial frame. INSs are widely used because it refers to no real-world item beyond itself. It is therefore resistant to jamming and deception.
An INS may consist of an inertial measurement unit combined with control mechanisms, allowing the path of a vehicle to be controlled according to the position determined by the inertial navigation system. An inertial measurement unit contains instruments for position monitoring. Often typical INS uses a combination of accelerometers and any number of control devices.
INSs have typically used either gyrostablized platforms or ‘strapdown’ systems. The gyrostabilized system allows a vehicle's roll, pitch and yaw angles to be measured directly at the bearings of gimbals. The INS is traditionally rotated using electromagnetic motors on a ball bearing supported gimbal axis. A disadvantage of this scheme is that it employs multiple expensive precision mechanical parts. It also has moving parts that can wear out or jam, and is vulnerable to gimbal lock. In addition, for each degree of freedom another gimbal is required thus increasing the size and complexity of the INS. Therefore, to get complete three dimensional calibration, at least three gimbals is needed.
INSs require periodic rotation to calibrate instruments. There is a need for rotational control of INSs without the use of conventional torque motors eliminating complex parts that add weight, size and cost to the INS assembly. A traditional method of rotating an INS for calibration is to torque it about an axis using electromagnetic motors on a ball bearing supported gimbal axis. A disadvantage of this method is that it employs multiple expensive precision mechanical parts. It also has moving parts that can wear out or jam, and is vulnerable to gimbal lock. Another problem of this system is that for each degree of freedom another gimbal is required thus increasing the size of the inertial system.
INSs using ball bearing supported gimbals typically contain embedded instrumentation, such as acceleromaters. In these systems, data from the instrumentation supported by the gimbals is communicated to other systems through moving contact devices, such as slip rings, which provide a constant electrical channel for data without restricting the movement of the inertial sensor assembly. However, slip rings, like ball bearing supported gimbals, are moving physical structures subject to wear and therefore represent a potential failure point for an inertial navigation system, or other system. Data signals communicated through slip rings also suffer from noise interference and low bandwidth. The embedded instrumentation also limits the full rotational capacity of the INS due to the physical constraints of the connection.
Another type of inertial navigation system is one that floats a sensor assembly with neutral buoyancy in a fluid. This method requires an extremely complex assembly, sensitive temperature control and obvious sealing challenges that add considerably to the cost of deployment and maintenance. Also, many of these fluids are hazardous or require a high degree of purity.
Inertial navigation systems which use spherical gas bearings typically require very tight tolerances on the surrounding support shell. These tight tolerances increase the cost of the system and limit the design flexibility of the system.
For the reasons stated above and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for a guidance system which is inexpensive and easy to move in all directions for calibration without having parts that wear out or require extensive maintenance.
The above-mentioned drawbacks associated with existing inertial navigation systems are addressed by embodiments of the present invention and will be understood by reading and studying the following specification.
In one embodiment, an inertial navigation system is provided. The inertial navigation system comprises a sensor block and an outer shell that substantially surrounds the sensor block. A plurality of gas pads are connected to the outer shell that float the sensor block in gas creating a near frictionless environment to allow the sensor block to move in all directions. Each of the plurality of gas pads is adapted to receive pressurized gas. The outer shell and the sensor block are separated by a gap created by the pressurized gas.
In one embodiment, a method of eliminating the use of gimbals in an inertial navigation system is provided. The method comprises surrounding a sensor block with an outer shell having a plurality of gas pads. The gas pads are adjusted inward to nearly touch the sensor block. The gas pads are pressurized so that a gas gap is formed between the sensor block and the gas pads. The sensor block floats in a near frictionless environment created by the pressurized gas.
In one embodiment, a method of calibrating sensors in an inertial navigation system is provided. The method comprises floating a sensor block containing sensors in pressurized gas creating a near frictionless environment. The sensor block is rotated in multiple directions using gas jets. Measurements are obtained from the sensors at different positions and verified against known values at the different positions. A control unit is calibrated with the measurements obtained from the sensors.
Features and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the drawings, in which:
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific illustrative embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical and electrical changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense.
Embodiments of the present invention provide an inertial navigation system (INS) having an inertial measurement unit (IMU) floated in gas creating a near frictionless environment to allow motion in all directions. By allowing motion in all directions, complete calibration in three dimensions is possible. Further, by floating the IMU in gas the need for gimbals and ball bearings is eliminated, thereby reducing the complexity, size, and cost of the inertial navigation system. Also, by eliminating gimbals and ball bearings and other moving physical structures, there is no problem with wear on the physical structures from contact between rotating surfaces thus improving the accuracy and durability of the INS. The floated IMU is operable in strap down, one degree of freedom, two degrees of freedom, or three degrees of freedom rotation with no change in size, weight, or complexity. The degrees of freedom of motion are independent of size whereas in a gimbaled system the gimbaled system gets larger as each degree of freedom is added. An IMU operated in three degrees of freedom is calibrated three dimensionally.
Embodiments of the present invention provide the utilization of articulated gas pads to float the IMU. The gas pads allow for relaxed tolerance requirements for a surrounding support shell and easy adjustment when an IMU moves due to disturbances. Gas bearings, and more specifically air bearings, are non-contact bearings that utilize a thin film of pressurized air to provide a frictionless interface between two surfaces. The non-contact principles of an air bearing provide clear advantages over traditional bearings since problems such as wear are eliminated. The typical implementation of a spherical air bearing is to have very tight tolerances on two mating surfaces of an inner and outer sphere, with a small air gap between the two. This leads to increased cost and limits design flexibility. The articulated gas pad is an alternative that requires smaller pieces designed with closer tolerances allowing more design and adjustment flexibility in the overall air bearing as well as lower costs in machining.
Embodiments of the present invention provide IMUs or sensor blocks including one or more instruments for monitoring, angular position, acceleration, calibration and the like. The instruments are held in a sensor block that protects the instruments from vibrations, thermal problems, radiation and other things that could degrade the instruments. When sensor blocks are built the instruments are initially calibrated and then placed in the appropriate vehicle. However, if not immediately used the instruments tend to drift and become less accurate over time. For high accuracy applications the sensor block must be periodically rotated in order to recalibrate and regain higher accuracy. Recalibration is accomplished by rotating the sensor block and recording readings from the instruments at different positions and then verifying the readings against known values.
In operation, sensor block 200 is floated in a near frictionless environment as described in the '6475 Application. Sensors 206 are rotated for calibration using gas jets as described in the '6535 Application. In one embodiment, sensors 206 are accelerometers. Accelerometers when pointed horizontally show a G force of zero, and when pointed upwards they show a G force of 1 and when pointed downwards they show a G force of −1. The sensor block 200 is rotated so that the accelerometers point in these aforementioned directions and the readings from the accelerometers are recorded. If the accelerometer is not reading the known value for the different directions, a computer or other control unit can be calibrated to make it read the appropriate value. Rotation can be done once a week, once a day or whenever is necessary depending on the accuracy needed.
In one embodiment, outer shell 302 is adapted to receive a plurality of gas pads 308. In this figure only the mounting stem portion of gas pads 308 as described in the '6475 Application is shown and hereinafter will be referred to only as gas pads 308. Gas pads 308 are spaced around the outer shell 302 and are used to suspend an inner sensor block (not visible) in a near frictionless environment as described in
In operation, gas is supplied to gas hoses 310 that are connected to the mounting stem portion of gas pads 308 as described in the '6475 Application. A sensor block (not visible) inside outer shell 302 is floated in a near frictionless environment. In one embodiment, the sensor block contains sensors 206 as described in
In one embodiment, first gas plenum 413 and second gas plenum 415 are used to reduce the use of individual hoses to each gas pad 410. In one embodiment, first gas plenum 413 and second gas plenum 415 are used to distribute a pressurized gas evenly to a group of gas pads 410. In one embodiment, multiple gas plenums are used depending on the specific design details to cover one or more gas pads 410. In this embodiment, first gas plenum 413 has an opening 414 to receive pressurized gas. In this embodiment, first gas plenum 413 is adapted to fit over first half shell 407 and second gas plenum 415 is adapted to fit over second half shell 409. In one embodiment, first gas plenum 413 has a different operating gas pressure than second gas plenum 415. In an alternate embodiment, both first gas plenum 413 and second gas plenum 415 provide radiation shielding to INS 400. Radiation shielding is beneficial in protecting internal instruments and electronics from various kinds and levels of radiation. In another embodiment, second gas plenum 415 fits inside a support fixture 416. In one embodiment, support fixture 416 is fastened to mid plate 404 by any appropriate fasteners such as bolts, screws, rivets, or the like. In another embodiment, first half shell 407 has an opening 408 that corresponds to opening 414 located in first gas plenum 413. In another embodiment, openings 408 and 414 allow for pressurized gas to be received by INS 400. In one embodiment, openings 408 and 414 allow for position monitoring devices such as 418 to monitor rotation and position of sensor block 402. In one embodiment, the position monitoring device is as described in the '7057 Application incorporated herein. In operation, pressurized gas from gas plenums 413 and 415 is supplied to gas pads 410-1 to 410-T which pressurize the gap between gas pads 410-1 to 410-T and sensor block 402 causing sensor block 402 to float in the gas creating a near frictionless environment free of any physical contact. Sensors (not visible), as described in
In operation, INS 500 is adapted to be mounted in aircraft, missiles and other projectiles, submarines and space technology as well as a number of other vehicles. Sensor block 502 measures the position and attitude of the vehicle in which it is mounted by measuring the accelerations and rotations applied to the system's inertial frame. Sensor block 502 is adapted to rotate freely in a near frictionless environment allowing for easy rotation and calibration. In one embodiment, calibration is performed as described in
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.
This application is related to and claims the benefit of the filing date of U.S. Provisional Application No. 60/608,819 filed on Sep. 10, 2004, entitled GENERALIZED INERTIAL MEASUREMENT ERROR REDUCTION THROUGH MULTIPLE AXIS ROTATION DURING FLIGHT, Ser. No. 11/004,517, which is incorporated herein by reference. This application is also related to the following applications filed on even date herewith, all of which are hereby incorporated herein by reference: U.S. patent application Ser. No. 11/004,517, entitled “GENERALIZED INERTIAL MEASUREMENT ERROR REDUCTION THROUGH MULTIPLE AXIS ROTATION DURING FLIGHT;” U.S. patent application Ser. No 11/004,452, entitled “ARTICULATED GAS BEARING SUPPORT PADS;” U.S. patent application Ser. No. 11/004,214, entitled “GAS JET CONTROL FOR INERTIAL MEASUREMENT UNIT;” U.S. patent application Ser. No. 11/004,529, entitled “THREE DIMENSIONAL BALANCE ASSEMBLY;” U.S. patent application Ser. No. 11/004,531, entitled “SPHERICAL POSITION MONITORING SYSTEM;” U.S. patent application Ser. No. 11/004,759, entitled “ABSOLUTE POSITION DETERMINATION OF A OBJECT USING PATTERN RECOGNITION;” U.S. patent application Ser. No. 11/004,743, entitled “PRECISE, NO-CONTACT, POSITION SENSING USING IMAGING;” U.S. patent application Ser. No. 11/004,177, entitled “RF WIRELESS COMMUNICATION FOR DEEPLY EMBEDDED AEROSPACE SYSTEMS.”
Number | Name | Date | Kind |
---|---|---|---|
1315735 | Michell | Sep 1919 | A |
2363260 | Peskin | Nov 1944 | A |
2710234 | Hansen | Jun 1955 | A |
2959060 | Kunz | Nov 1960 | A |
2999391 | Freebairn et al. | Sep 1961 | A |
3039316 | Slater | Jun 1962 | A |
3056303 | Naylor | Oct 1962 | A |
3258977 | Hoffman | Jul 1966 | A |
3269195 | Cahoon et al. | Aug 1966 | A |
3328595 | Tood, Jr. | Jun 1967 | A |
3365942 | Blazek et al. | Jan 1968 | A |
3439546 | Baker et al. | Apr 1969 | A |
3572856 | McHugh | Mar 1971 | A |
3576124 | O'Connor | Apr 1971 | A |
3670585 | Alexander et al. | Jun 1972 | A |
3769710 | Reister | Nov 1973 | A |
3782167 | Stuelpnagel | Jan 1974 | A |
3938256 | Crocker, Jr. | Feb 1976 | A |
4003265 | Craig et al. | Jan 1977 | A |
4143466 | Quermann | Mar 1979 | A |
4150579 | Vaughn | Apr 1979 | A |
4214482 | Bouchard | Jul 1980 | A |
4244215 | Merhav | Jan 1981 | A |
4290316 | Noar et al. | Sep 1981 | A |
4291926 | Tomioka et al. | Sep 1981 | A |
4413864 | Phillips | Nov 1983 | A |
4458426 | O'Connor et al. | Jul 1984 | A |
4488041 | Baudot | Dec 1984 | A |
4515486 | Ide | May 1985 | A |
4671650 | Hirzel et al. | Jun 1987 | A |
4711125 | Morrison | Dec 1987 | A |
4723735 | Eisenhaure et al. | Feb 1988 | A |
4822181 | Egli | Apr 1989 | A |
4917330 | Dulat et al. | Apr 1990 | A |
5067084 | Kau | Nov 1991 | A |
5088825 | Derry et al. | Feb 1992 | A |
5099430 | Hirsch | Mar 1992 | A |
5115570 | Krogmann et al. | May 1992 | A |
5319577 | Lee | Jun 1994 | A |
5357437 | Polvani | Oct 1994 | A |
5396326 | Knobbe et al. | Mar 1995 | A |
5410232 | Lee | Apr 1995 | A |
5710559 | Krogmann | Jan 1998 | A |
5716142 | Kristensen et al. | Feb 1998 | A |
5743654 | Ide et al. | Apr 1998 | A |
5745869 | Van Bezooijen | Apr 1998 | A |
5790049 | Harrell | Aug 1998 | A |
5894323 | Kain et al. | Apr 1999 | A |
6145393 | Canton | Nov 2000 | A |
6172665 | Bullister | Jan 2001 | B1 |
6481672 | Goodzeit et al. | Nov 2002 | B1 |
6594623 | Wang et al. | Jul 2003 | B1 |
6594911 | Brunstein et al. | Jul 2003 | B2 |
6629778 | Enderle et al. | Oct 2003 | B1 |
6711952 | Leamy et al. | Mar 2004 | B2 |
6741209 | Lee | May 2004 | B2 |
6786084 | Schroeder et al. | Sep 2004 | B2 |
6802221 | Hedeen et al. | Oct 2004 | B2 |
6826478 | Riewe et al. | Nov 2004 | B2 |
6918186 | Ash et al. | Jul 2005 | B2 |
7003399 | Chappell | Feb 2006 | B1 |
7066653 | Dourlens et al. | Jun 2006 | B2 |
7340344 | Chappell | Mar 2008 | B2 |
20020077189 | Tuer et al. | Jun 2002 | A1 |
20030120425 | Stanley et al. | Jun 2003 | A1 |
20040015323 | Boyton | Jan 2004 | A1 |
20040075737 | Kirby | Apr 2004 | A1 |
20040089083 | Bailey | May 2004 | A1 |
20040098178 | Brady et al. | May 2004 | A1 |
20040212803 | Siegl et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
866473 | Apr 1961 | GB |
878939 | Oct 1961 | GB |
1015681 | Jan 1966 | GB |
1284195 | Aug 1972 | GB |
2166920 | May 1986 | GB |
9505547 | Feb 1995 | WO |
2004023150 | Mar 2004 | WO |
2006060715 | Jun 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060058961 A1 | Mar 2006 | US |
Number | Date | Country | |
---|---|---|---|
60608819 | Sep 2004 | US |