The invention concerns a closure device for reversibly closing an opening on a container and an associated container for co-operating with such a closure device as well as a corresponding method of reversibly closing the opening on the container.
Containers such as liquid containers are used in many different ways both in the private sector and also in the business sector. The containers are generally provided with a closure which must satisfy particular demands depending on the respective specific use involved. For example a container can be subjected to pressure by virtue of the content thereof such as a carbonated liquid, and that entails corresponding demands both on the container and also on the closure. In the case of the drinks cans which are to be given by way of example for such containers, there is the problem of making the closure gas-tight and liquid-tight. As the consumer at least partially removes the closure element from the opening prior to consumption the closure element must be movable relative to the container in an outward or inward direction and possibly also removable. The fact that containers subjected to an internal pressure have a tendency for the closure element to be pushed open however causes difficulty in designing the closure element in that way.
In conventional drinks can closures the closure element includes a cover tongue portion, the opening being the known drinking opening. The closure element is removed from the opening by breaking open a weakening line. In that case the closure element is pressed against the internal pressure into the interior of the container upon being opened. That is achieved in the case of the conventional closures by a lever system having a high lever ratio. Ultimately such a closure element which is used in particular for conventional drinks cans only affords an irreversible opening procedure and the container cannot therefore be re-closed.
In that respect the object of the invention is to provide a reversible closure for containers which are subjected to an internal pressure, that is to say a closure which is re-closable.
That object is attained in a surprisingly simple fashion by a closure device having the features of claim 1 and a container for co-operation with such a closure device as set forth in claim 22.
The closure device according to the invention includes an elastically deformable and planarly extending cover which can be moved into at least two operating positions or situations, wherein in a first operating position of the cover it is aligned with respect to the opening of the container and in a second operating position the cover undercuts the opening of the container over the full periphery thereof, with a peripheral edge portion, so that the undercutting region on the cover and the undercut region on the container form complementary sealing surfaces for gas-tightly and liquid-tightly closing the opening, and an actuable means for applying a force to the cover for bending the cover in such a way that it is deformable from one operating position into another.
The closure device according to the invention can in principle be used for all containers which are subjected to pressure, irrespective of the container material, that is to say for example for glass, plastic or also metal sheet containers. Furthermore the closure device according to the invention is also not limited to a given form of container, for example the device can be used for barrel- or drum-shaped, can-shaped or also bottle-shaped containers. The closure device according to the invention can in principle also be applied to any design configurations for the opening, for example in relation to circular or oval openings. As the cover of the closure device is of such a design configuration that in an adjustable operating position it undercuts an inner edge of the container over the full periphery thereof, this provides for sealing integrity in respect of the container opening, which improves with a higher internal pressure, as when a higher internal pressure obtains the undercut region on the container and the undercutting region on the cover are pressed against each other with a higher force. In that respect the closure device according to the invention together with the associated container represents a self-sealing system.
In contrast to conventional reversible closure devices such as for example a screw closure or a cylindrical rubber member which can be introduced into the neck of a bottle and which is gripped at its end faces and by the application of force to the two end faces, by virtue of the volume forces occurring in the peripheral region, is pressed against the neck of the bottle, the closure device according to the invention affords at least the possibility of a small structural height so that stackability of the container can be afforded, in particular when the container is of a suitable design configuration. That represents a not inconsiderable advantage in terms of storage and transport of the product in the container.
Desirable materials for the cover have the property that they are elastically deformable, that is to say stretchable. That property can be afforded for example by certain plastic materials. The necessary elastic properties are enjoyed for example by the thermoplastic materials polypropene (PP) and polyethene (PE). An elastomer can also be used as the material for the cover.
In order to keep down the demands on the material of the closure device or the cover in regard to its stretchability or elasticity, it can be provided that the cover in the first operating position can be axially introduced at least portion-wise into the opening so that the deformation which is then necessary by bending does not have to be excessively great in order to produce the described positively locking engagement between the cover and the edge of the opening on the container. That operation of introducing the cover can be effected for example by a purely translatory movement of the cover into the opening so that in that case no deformation or bending force has to be applied to attain the first operating position.
In order to make the procedure involved in closing the opening on the container particularly simple for the user to perform, it can be provided that the cover in the transition between the two operating positions performs bending deformation without tilting or axial displacement relative to the container opening. For this embodiment, the user only has to apply the force necessary for deformation of the cover without additionally having to perform a rotary movement or a translational movement with the cover, which greatly facilitates handling.
It may be desirable if in the first operating position of the cover it is force-free, that is to say no external force acts on the cover. In that respect, no potential energy is stored in the cover in that case, for elastic deformation of the cover upon cessation of the external force. Accordingly such a potential energy can be stored in the cover when moving into the second operating position: starting from the first operating position of the cover elastic bending deformation is produced at the cover by the application of the external force to the cover for moving it into the second operating position, that elastic bending deformation producing a return force which acts in opposition to the external force.
It may be particularly advantageous if the design configuration of the closure device according to the invention is such that with the removal of the external force on the cover the potential energy introduced into the cover leads to a return of the cover into its first operating position, that is to say the cover is automatically returned to its configuration which corresponds to the first operating position, and that facilitates handling of the closure device according to the invention.
In another embodiment however it can also be provided that the cover is transferred from the sealing operating position by the application of an external force, for example a pulling force, to move into the first operating position in which the cover is aligned with respect to the opening of the container and for example can be removed from the container.
Depending on the respective configuration involved it may be desirable if the force means acts permanently on the cover to maintain the sealing operating position of the cover (second operating position).
It may be desirable if the container, to afford the opening, has an outwardly implemented peripheral rolled configuration. Such a rolled configuration can be produced in a simple manner for example if the container comprises metal sheet. The rolled configuration can serve in particular for connection to the closure device according to the invention. If the opening of the container is provided in its boundary by a portion of plastic material or glass, a shaped material configuration in the manner of a bead disposed externally in relation to the container, around the opening, can advantageously also be provided as a connecting element in relation to the closure device according to the invention. In this respect the specified features of ‘rolled configuration’ and ‘bead’ in the region of the container opening are to be deemed to involve the same action. They both represent an approximately cylindrical configuration around the container opening, which is in engagement with the closure device at least in an operating position of the cover. The man skilled in the art will see here a large number of possible design configurations, depending on the container material or the material constituting the region of the container which defines the opening and therewith the undercut region on the container for affording the sealing surface for the cover.
In a particularly desirable embodiment the cover in the first operating position is of a pot-like configuration with a bottom portion and a wall portion extending substantially normal to the container opening.
It may be desirable if the bottom portion of the pot-shaped cover in the first operating position of the cover is shaped concavely towards the interior of the container. That affords the possibility of achieving an increase in area in the bottom region of the cover by virtue of the application of a force to the bottom to produce the undercut configuration, and in addition to store deformation energy which can be used to return the cover to the first operating position when the external force on the cover is removed.
Particularly for the purposes of fixing to a rolled portion or bead, as referred to hereinbefore, in the region of the opening of the container, the wall portion of the container, at the end remote from the cover bottom portion, goes into an outwardly curved portion which bears against or can be caused to bear against the rolled configuration of the container opening. The curved portions, which bear against each other, of the cover and the container edge afford the advantage that, upon a change in shape of the cover, those contact surfaces are assured of coming to bear snugly against each other and for example no hooking engagement of the contact surfaces or the like can occur. In that respect upon spreading movement of the cover in the radial direction the cover is peripherally guided by the associated edge portion on the container.
In order to assist with bending of the cover into the desired cover configuration by virtue of an external force acting thereon there can be provided a guide device, in particular in the form of a disk, which rests on the cover on the side thereof remote from the container and co-operates with the cover. That guide disk is generally made from a material which is stable in respect of shape and can thus also prevent unwanted outward buckling or deformation of the cover when a high internal pressure occurs in the container.
To assist with the co-operation of the cover and the guide disk it is desirable if guide elements are arranged on the cover in particular in the region of the transition between the wall portion and the bottom portion, or in the lower region of the wall portion, which co-operate with contact surfaces on the guide disk to assist with the spreading movement of the cover. Those guide elements can include for example ribs which extend axially with respect to the opening and which are desirably spaced peripherally on the cover in order not to impede the spreading movement of the cover. In a particular embodiment however it can also be provided that disposed on the cover in the lower region of the wall portion is a bead which extends around the entire periphery and which co-operates with a contact surface on the guide disk for supporting a spreading movement of the cover.
In accordance with the invention a large number of possible options can be used as the means for applying the force in order to deform the cover as described. For example it is possible to use a screw or a lever to exert a force on the cover. In that respect the force means can be fixed directly to the closure or can also be separate from the closure on the container.
In a particularly desirable embodiment there can be provided an actuating element having a pivotable eccentric lever which includes a gripping portion and a cam head which exerts a force on the cover for deformation thereof, in dependence on the pivotal position of the lever. For that purpose the pivot spindle can extend through the cam head, in which respect the spindle can be fixed to the cover, for example by means of a lug which comprises a comparatively stiff material and which is mounted to the cover wall portion and which extends inwardly. In that case the pivot spindle is displaced with respect to the central axis of the lever or the cam head is also not of a rotational shape so that it can exert on the cover, a force which is dependent on the pivotal position of the lever.
A particularly simple design configuration for the closure device according to the invention can be provided if the force means produces a force substantially in the normal direction of the opening, that is to say it is produced axially, the force being transmitted to the cover by way of the guide disk.
It is particularly desirable if the closure device according to the invention has a means for venting the container so that for example pressure equalisation can be carried out prior to removing the positively locking engagement between the cover and the container. It is possible in that way to prevent a high internal pressure during removal of the positively locking connection between the cover and the container giving rise to uncontrolled processes such as an unwanted escape of liquid by virtue of vigorous generation of gas or explosive separation of the closure device according to the invention from the container.
In regard to the possibility of venting the container it may be desirable if the means for venting the container has a passage in the cover and a corresponding passage in the guide disk, wherein both passages form a venting passage for the container, which is closed by an actuable valve device.
In order to avoid two actuating elements, one for the force means and one for the venting means, it can desirably be provided that the valve device is operatively connected to an actuating element for the force means. For example, in the case of an actuating lever as described hereinbefore, the cam head can have a groove which corresponds to the venting passage in dependence on the pivotal position of the lever.
In order to avoid the closure device being lost when putting the cover into the first operating position, depending on the respective design configuration involved, there can be provided a fixing means with which the closure device is fixed to the container non-losably and independently of the operating position of the cover. By way of example in a preferred embodiment the closure device can extend beyond a rolled configuration or bead on the container and can there be glued to the container or joined thereto in some other fashion.
As already described hereinbefore the closure device according to the invention can be used for a large number of containers. That also applies in particular to cylindrical metal cans such as drinks cans which are adapted to co-operate with the closure device according to the invention. By way of example the container can have a container body with a primary opening which is closed by a primary closure which itself in turn has an opening which is gas-tightly and liquid-tightly closable with the closure device according to the invention. Such a primary closure can be for example in the form of a surface portion (panel) of sheet metal which is joined to the container body by a folded seam, adhesive and/or soldering, wherein an inwardly disposed portion of the panel, which portion extends around the opening over the periphery thereof, represents a sealing surface for the portion of the cover, which engages thereover. That panel can have for example around the opening thereof a peripherally extending rolled configuration which can be brought into engagement with the closure device. The closure device can be glued to the panel in order to prevent the closure device from being lost.
In the method aspect the foregoing object of the invention is attained with a method of reversibly closing an opening on a container with a closure device having a deformable planarly extending cover, with the steps set forth in claim 27. In that procedure the cover is aligned outside the container with respect to the opening thereof and the cover is then deformed in such a way that with a peripheral edge portion it undercuts the opening of the container over the full periphery so that the undercutting region on the cover and the undercut region on the container form complementary sealing surfaces for gas-tight and liquid-tight closure of the opening.
The invention is described hereinafter with reference to the accompanying drawings by the description of some embodiments and further advantageous features. In the drawings:
a and 1b show a side view illustrating the structure in principle of a drinks can,
a is a view showing the principle of a closure element according to the invention in a first operating position,
b shows the closure element of
c is a view showing the principle of a further closure element according to the invention,
a is a view in section of a further embodiment of the closure element according to the invention in a first operating position,
b shows the closure element of
a shows a sectional view of a fourth embodiment of the closure element according to the invention in a second operating position, and
b shows the closure element of
The invention is described hereinafter by reference to the example of various configurations of a closure element for a drinks can. A diagrammatic view showing the principle of such a drinks can is illustrated in
To facilitate understanding, the structure of an embodiment of the closure element according to the invention is described with reference to
b shows the procedure involved in implementing the sealing operating position of the closure device. For that purpose, a force F is applied in the direction of the illustrated arrow, here extending axially with respect to the panel opening. Under the influence of that force F, the bend in the bottom portion 110 becomes progressively less and totally disappears in the extreme situation shown in
If the force F acting from the exterior is removed the closure element 105 is moved automatically by virtue of the elastic force in the material from the sealing operating position shown in
c is a view showing the principle of a further embodiment of the closure element according to the invention which is of a similar structure to that shown in
The external force for moving the cover into the sealing operating position acts in this embodiment on the cover 105 by way of the guide disk 150. As the contact surface 151 is parallel to the surface of the ribs 125 with a slight angle relative to the axis and the guide disk is moved axially by the application of the external force F, the contact of the guide disk and the ribs 125 promotes the spreading movement of the cover in the region of its bottom 110 (see
a and 3b show another embodiment of the closure element according to the invention with a for example eccentric lever for applying the force for flexing the cover into the sealing operating position. As can be seen the closure element shown in
In the operating position of the cover 205 shown in
b now shows the arrangement illustrated in
The sealing closure position shown in
a and 6b show a further embodiment of the closure element according to the invention having two particular features which will be discussed in detail hereinafter.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 030 982 | Jul 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2006/000831 | 5/13/2006 | WO | 00 | 6/2/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/003149 | 1/11/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
905652 | Comings | Dec 1908 | A |
1360911 | Flanigan | Nov 1920 | A |
1491325 | Thomas, Jr. | Apr 1924 | A |
2671574 | Wolfe | Mar 1954 | A |
2782958 | Hurley | Feb 1957 | A |
3080993 | Livingstone | Mar 1963 | A |
3163311 | Cornelius | Dec 1964 | A |
3756480 | Swett et al. | Sep 1973 | A |
3788512 | Brahler | Jan 1974 | A |
4157764 | Moller | Jun 1979 | A |
4387825 | Parent | Jun 1983 | A |
4747511 | Dutt et al. | May 1988 | A |
5855288 | Dallas, Jr. | Jan 1999 | A |
7513381 | Heng et al. | Apr 2009 | B2 |
Number | Date | Country |
---|---|---|
461516 | Dec 1945 | BE |
1072126 | Dec 1959 | DE |
1914314 | Oct 1969 | DE |
1532480 | Apr 1970 | DE |
3535554 | Apr 1987 | DE |
3902500 | Aug 1990 | DE |
924856 | Aug 1947 | FR |
943325 | Dec 1963 | GB |
Number | Date | Country | |
---|---|---|---|
20080245806 A1 | Oct 2008 | US |