The present invention relates to a gas tight tubular joint or connection, particularly related to mono diameter pipe or casing being used in connection with the production of oil and/or gas, where the pipes or casings are manufactured from tubular sections and where the tubular sections, after being interconnected at their respective ends, are finally formed by expansion.
Expandable tubular casings have traditionally been used in the oil and gas industry to solve operational challenges met during the drilling and maintenance of wells. The technology covers applications such as:
Expansion of a tubular is performed by inflicting stress to the material that forces the material from elastic deformation into plastic deformation. This permanently deforms the material to a pre-designed shape, i.e. radially deform a tubular by increasing the internal and external diameter. There are presently several expansion mechanisms for expanding metal tubular, including fixed cone, flexible cone and rotating expansion device driven by an axial mechanical force through the drillstring or by utilizing hydraulic power through the injected wellbore fluid, i.e. mud.
In the oil and gas industry there is a great expectation to the future applications of expandable tubular technology, aiming towards replacing the traditional nested casing design with a design that allows one internal diameter from top to bottom in a well. This future application is commonly referred to as “mono diameter” or “mono bore” and has potential to dramatically reduce field development cost, reduce environmental impact and increase safety within the drilling industry. The full potential may be revealed when achieving expandable tubular connections properties that satisfies production casing requirements, i.e. maintaining post-expansion gas pressure integrity.
A low gas pressure rating constitutes a limitation in the application of expandable tubular casings. When designing a well, different mechanical load scenarios are simulated to ensure mechanical integrity in the well during its full lifetime. A tubular casing with a relatively low gas pressure integrity may i.e. be used for drilling purposes but not be used as a fully qualified production casing, i.e. endure loads encountered if there is a leak in the production tubing allowing gas pressure against the production casing acting as a secondary barrier.
Challenges have been met with regard to achieving gas pressure integrity when using conventional connections between the expandable tubular joints, i.e. the threads dislocate and deform during the expansion process, reducing or eliminating interfacial residual stress, causing an absence of gas pressure integrity.
There exists several methods of joining expandable tubular, e.g. U.S. Pat. No. 6,409,175 and US patent application No. 2003/0234538.
U.S. Pat. No. 6,409,175 B1 relates to a method and apparatus are provided for obtaining a mechanical connection and pressure tight seal in the overlapping area of two telescoping tubular bodies where the two bodies are radially expanded and where the expansion forces an annular seal of Teflon in the overlapping area into a pressure sealing engagement between the bodies. Such seal is, however, not gas tight and accepted to be used in casings of well bores.
US patent application No. 2003/0234538 relates to a conventional threaded connection between segments expandable tubulars that provides multiple sealing points along the pin and box members that can withstand high pressures. This solution is neither gas tight.
The present invention relates to a gas tight expandable tubular joint or connection which overcomes the disadvantages with the known solutions and which is mechanically strong, potentially with metal sealing, and which is gas tight and complies with the requirements of casings in well bores. The joint or connection of an expandable tubular represents the weakest point of such tubular, and with the present invention is in particular obtained a lengthwise distribution of the connecting surfaces covering a larger area, thereby obtaining the increased local strength of the joint or connection.
The invention is characterized by the features as defined in the attached, independent claim 1.
Claims 2-5 define preferred embodiments of the invention.
The present invention will be described in further detail in the following by way of examples and with reference to the figures, where:
The present invention is based on the general principle that the pipes or casings are formed from at least two, one outer and one inner tubular section. The ends of each of said respective tubular section is overlapping the next, succeeding tubular section, whereby one or more of the inner, intermediate or outer tubular sections are of different metallic materials and/or different thickness, and under the deformation process, is plastified or plastically deformed in the overlapping zone forming a metallic seal in such zone and thereby providing gas pressure integrity between the inside and outside of the expanded tubular pipe/casing.
The Invention will obtain a satisfactory gas pressure integrity for production loads in an expandable tubular connection after being exposed to an expansion process, thereby removing the present restriction in application, i.e. application as a production casing, seen in expandable tubular technology.
The connections 4, 5, 6 for each pipe is based on conical, or straight treads. While most treads in conventional casing connections are made out of one continuous tread forming one tread area over the entire wall thickness of the tubular, this technology may enable splitting of the treaded area in two or more treads over the wall thickness of the casing. Each treaded area is positioned an axial distance, δ, from the adjacent connections. The overlapping area, δ, between two adjacent treads, represents the post expansion seal partly or fully. The sealing capacity of the overlapping area, δ, at any time is directly linked to the residual stresses between two overlapping surfaces superposed the operational stresses induced to the same surfaces during operation. Both external and internal overpressure will increase this sealing stress.
The residual stresses are generated through the expansion process by for instance a conical expansion tool (e.g. cone or roller). Two main deformation modes interact: Tension in the θ-direction and bending in the r-z plane. Bending is energised by the cone. Initially, as the cone meets the pipe, the straight pipe is bent outwards as can be seen in
The residual stress can be obtained if the pipe bent outwards meets a barrier before the pipe itself redirect the wall into straight orientation. In such case the barrier will apply a force to the bent pipe wall, which will redirect the pipe into a straight orientation as is shown
The residual stress can also be obtained by a different relative stiffness between adjacent tubular sections. Such stiffness variation can be effectuated by differences between the two bodies, such as different wall thickness or mechanical strength. With different stiffness in the two bodies, the resulting radii of an induced bending by e.g. a cone will be different as is shown in
Residual stresses in the interface between two adjacent tubular sections inside one another after an expansion can also come about using different base material properties (rheology) in the tubular sections. To achieve residual interfacial stress in this manner the outer tubular sections must have a higher yield stress than the inner pipe in the state of relaxation. In this way the elastic spring-back of the outer tubular section is longer than the inner tubular section. At one point the inner tubular section is relaxed while the outer tubular continues to retract as is shown in
Residual stresses can be generated by the special shape occurring in the two ends of a pipe expanded by a conical device. The effects taking place in the ends are the end-tips bending towards the centre line as can be seen in
The invention as defined in the attached claims are not limited to the examples as described above. Thus, the tubular connection may as shown in
Further, as shown in
The residual stress can optionally be enforced by introducing a more formable metal 19 in-between two adjacent tubular sections 17, 18 as shown in
The API demand for metal to metal sealing in gas tight connections limits the “gasket” material to metals. Pure aluminium is such a metal, which is highly formable and establish good chemical bonding with steel when pressure and deformation causes the oxide films to break, and intimate steel to aluminium contact is made.
Another material is silver, which has excellent corrosion resistance in intimate contact with steel.
An alternative would also be a chemical bonding, e.g. a metal with low yield strength creating inter-metallic bonds with the pipe metal or a chemical reaction after intimate contact (and possibly raised temperature/pressure) between different elements (reactants) or pipe metal after expansion.
Steel is by far the most commonly used material for casing applications today. The base casing and the connections for this technology can be the standard API 5CT L80 or X80 widely used for conventional casing. Alternatively one could use a material with a higher elongation to accomplish a higher margin to failure by rupturing through the expansion process.
As described above sealing may be energised by different mechanical properties.
In combination with standard L80 casing, a material with higher yield stress outside the L80 would be needed, or a material with a lower yield stress inside L80.
Number | Date | Country | Kind |
---|---|---|---|
20060790 | Feb 2006 | NO | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NO2007/000058 | 2/16/2007 | WO | 00 | 12/2/2008 |