Gas treatment system

Information

  • Patent Grant
  • 8454889
  • Patent Number
    8,454,889
  • Date Filed
    Friday, December 21, 2007
    17 years ago
  • Date Issued
    Tuesday, June 4, 2013
    11 years ago
Abstract
A gas treatment system has a housing defining an interior space adapted for holding liquid therein. The housing has an inlet port and an outlet port spaced from the inlet port so that gas passing through the interior space flows through the liquid therein. A gas delivery system directs gas to be treated into the interior space of the housing at the inlet port. An ultrasonic waveguide assembly is disposed within the interior space of the housing and includes an ultrasonic horn disposed at least in part intermediate the inlet port and the outlet port of the housing. The ultrasonic horn is operable at an ultrasonic frequency to ultrasonically energize liquid within the housing. An ultraviolet light source is for emitting ultraviolet light into the interior space of the housing to treat liquid flowing from the inlet port to the outlet port.
Description
FIELD

The present disclosure relates generally to systems for treating gas, and more particularly to systems for treating gas using ultrasonic energy.


BACKGROUND

It is common for various gases to be treated to remove impurities therefrom. For example, ambient air may contain impurities in the form of organics and/or microorganisms in the form of airborne or other gas entrained contaminations or pollutants or other impurities. In some instances, it is desirable to remove or eliminate these impurities before subsequent use of the gas or releasing the gas into the environment.


There are a number of known treatment technologies for treating gases to remove or eliminate impurities. Many of these technologies, however, are costly to purchase, operate, and maintain. In addition, they are often time consuming and relatively inefficient, and/or ineffective in their treatment of the impurities within the gas. For example, one known treatment method is to pass the gas to be treated through a filter. However, filtration of the impurities from the gas is limited by the pore size in the filter media and the ability of the filter to entrap impurities. That is, if the impurities (e.g., organics or microorganisms) are smaller than the pore size of the filter media the impurities will pass through the filter media.


SUMMARY

In one aspect, a gas treatment system comprises a housing defining an interior space. The interior space is adapted for holding liquid therein. The housing has at least one gas inlet port for receiving gas into the interior space of the housing and at least one gas outlet port for allowing gas to exit the interior space of the housing. The gas outlet port is spaced from the gas inlet port so that gas passing through the interior space of the housing from the gas inlet port to the gas outlet port flows through the liquid therein. A gas delivery system directs gas to be treated into the interior space of the housing at the gas inlet port. An ultrasonic waveguide assembly is disposed within the interior space of the housing and comprises an ultrasonic horn disposed at least in part intermediate the gas inlet port and the gas outlet port of the housing. The ultrasonic horn is operable at an ultrasonic frequency to ultrasonically energize liquid within the housing. An ultraviolet light source is for emitting ultraviolet light into the interior space of the housing to treat liquid flowing from the inlet port to the outlet port.


In another aspect, a gas treatment system generally comprises a housing defining an interior space. The housing comprises at least one gas inlet port for receiving gas to be treated into the interior space of the housing and at least one gas outlet port for allowing gas to exit the interior space of the housing. The gas outlet port is spaced from the gas inlet port so that gas passes through the interior space of the housing from the gas inlet port to the gas outlet port. At least one liquid inlet port is for receiving liquid into the interior space of the housing and at least one liquid outlet port is for allowing liquid to exit the interior space of the housing. The liquid outlet port is spaced from the liquid inlet port so that liquid flows through the interior space of the housing from the liquid inlet port to the liquid outlet port. A mixing zone within the housing is for mixing the gas and liquid within the interior space of the housing to form a gas-liquid solution. An ultrasonic horn is disposed within the interior space of the housing. The ultrasonic horn is operable at an ultrasonic frequency to ultrasonically energize the gas-liquid solution within the housing. An ultraviolet light source is for emitting ultraviolet light onto the liquid while the liquid is ultrasonically energized by the ultrasonic horn.


In yet another aspect, a process of treating a gas generally comprises delivering a gas to be treated to an interior space of a housing. The housing has at least one gas inlet port for receiving the gas into the interior space of the housing and at least one gas outlet port for allowing the gas to exit the interior space of the housing. The gas outlet port is spaced from the gas inlet port. The gas is mixed with a liquid within the interior space of the housing to form a gas-liquid solution. An ultrasonic horn disposed within the interior space of the housing is operated at an ultrasonic frequency to ultrasonically energize the gas-liquid solution within the housing. The energized gas-liquid solution is irradiated using an ultraviolet light source.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of one embodiment of a gas treatment system for treating a gas;



FIG. 2 is a longitudinal (e.g., vertical) cross-section of a housing of the system of FIG. 1 and illustrating an ultrasonic horn and a baffle assembly therein; and



FIG. 3 is an exploded perspective of the ultrasonic horn and the baffle assembly of FIG. 2.





Corresponding reference characters indicate corresponding parts throughout the drawings.


DETAILED DESCRIPTION OF THE INVENTION

With particular reference now to FIG. 1, one embodiment of a gas treatment system for treating a gas, such as ambient air, passing through the system is indicated generally at 10. The term “gas”, as used herein, is intended to refer to a single component gas or a gas mixture comprised of two or more gaseous components. In one suitable embodiment, the gas treated by the gas treatment system 10 may be ambient air having one or more impurities. It is understood, however, that the gas treatment system 10 can be used to treat other types of gases having impurities therein including, but not limited to, medical air, aircraft/spacecraft air, industrial emissions. The gas treatment system 10 disclosed herein may be used by itself or may be a component of a larger gas treatment process.


In one suitable embodiment, as illustrated in FIG. 1, the gas treatment system 10 comprises an ultrasonic treatment housing (or chamber), indicated generally at 12, defining an interior space 14 for receiving at least a portion of a waveguide assembly, indicated generally at 16. The housing 12 is generally elongate and has an inlet end 18 (a lower end in the orientation of the illustrated embodiment) and an outlet end 20 (an upper end in the orientation of the illustrated embodiment).


The housing 12 has one or more gas inlet ports 22 (one such gas inlet port being illustrated in FIG. 1) formed therein through which gas to be treated within the housing is delivered to the interior space 14 thereof. It will be understood by one skilled in the art that the inlet end 18 of the housing 12 may include more than one gas inlet port 22 and remain within the scope of this invention. For example, although not shown, the housing 12 may comprise two gas inlet ports, wherein the first gas inlet port and the second gas inlet port are suitably in parallel, spaced relationship with each other. In one suitable embodiment, each gas inlet port may comprise one or more air spargers, which divides the gas into numerous small bubbles as it is being introduced into the interior space 14 of the housing 12. The housing 12 also has at least one gas outlet port 24 at the outlet end 20 thereof for allowing gas to exit the interior space 14 of the housing. Thus, gas flows into the interior space 14 of the housing 12 through the gas inlet port 22, passes through the interior space, and exists through the gas outlet port 24.


The housing 12 also has one or more liquid inlet ports 23 (one such liquid inlet port being illustrated in FIG. 1) formed therein through which liquid is delivered to the interior space 14 thereof. It will be understood by one skilled in the art that the inlet end 18 of the housing 12 may include more than one liquid inlet port 23 and remain within the scope of this invention. For example, although not shown, the housing 12 may comprise two liquid inlet ports, wherein the first liquid inlet port and the second liquid inlet port are suitably in parallel, spaced relationship with each other. The housing 12 also has at least one liquid outlet port 25 at the outlet end 20 thereof for allowing liquid to exit the interior space 14 of the housing. The liquid outlet port 25 is positioned vertically below the gas outlet port 23. The relative positioning of the outlet ports 24, 25 allows the gas and liquid to separate by gravity upon exiting the housing 12. Thus, liquid flows into the interior space 14 of the housing 12 through the liquid inlet port 23, flows through the interior space, and exists through the liquid outlet port 25. It is understood that the gas treatment system 10 may instead have other suitable gas/liquid separation arrangements.


The term “liquid”, as used herein, is intended to refer to a single component liquid, a solution comprised of two or more components in which at least one of the components is a liquid such as a liquid-liquid mixture, a liquid-gas mixture or a liquid in which particulate matter is entrained, or other viscous fluids. In one suitable embodiment, the liquid is water but it is understood that other types of liquids can be used without departing from the scope of this invention.


The housing 12 is configured such that gas and liquid enter the interior space 14 of the housing adjacent the inlet end 18 thereof, and mixes together to form a gas-liquid solution that flows generally longitudinally within the housing (e.g., upward in the orientation of illustrated embodiment) and exits the housing generally at the outlet end 20 of the housing. More particularly, the interior space 14 of the housing has a liquid intake zone 29 in which initial swirling of gas and liquid within the interior space 14 of the housing 12 occurs. The mixing of the gas and liquid is facilitated by the swirling action caused by the gas and liquid being mixed entering the housing 12. Moreover, the air is delivered into the interior space 14 of the housing 12 through the gas inlet port 22 by an air sparger (not shown), which also facilitates the mixing of the air and the liquid. It is understood that other types of mechanical mixing apparatus can be used to mix the gas and liquid together to form a gas-liquid solution. It is also understood that the gas and liquid may be mixed to form a gas-liquid solution before entering the interior space 14 of the housing 12, for example, with an inline mixing system.


In the illustrated embodiment, the housing 12 is generally cylindrical, thereby having a generally annular cross-section. However, it is contemplated that the cross-section of the housing 12 may be other than annular, such as polygonal or another suitable shape, and remain within the scope of this disclosure. As described below, at least a portion 26 of the illustrated housing 12 is suitably constructed of a transparent material. In the illustrated embodiment, the portion 26 of the housing 12 is constructed of quartz glass while the remainder of the housing is constructed of stainless steel. It is understood, however, that the housing 12 may be constructed from any suitable material as long as the material is compatible with the gas-liquid solution in the housing, the pressure at which the housing is intended to be subjected to during operation, and other system conditions such as temperature.


With reference still to FIG. 1, the waveguide assembly 16 extends longitudinally at least in part within the interior space 14 of the housing 12 to ultrasonically energize the gas-liquid solution flowing through the interior space of the housing. In particular, the waveguide assembly 16 of the illustrated embodiment extends longitudinally from the inlet end 18 of the housing 12 up into the interior space 14 thereof to a terminal end 28 of the waveguide assembly, which is disposed intermediate the inlets port 22, 23 and the outlet ports 24, 25. Although illustrated in FIG. 1 as extending longitudinally into the interior space 14 of the housing 12, it is understood that the waveguide assembly 16 may extend laterally from a sidewall 30 of the housing, running horizontally through the interior space thereof. Typically, the waveguide assembly 16 is mounted, either directly or indirectly, to the housing 12 as will be described later herein.


With reference now to FIGS. 1 and 2, the waveguide assembly 16 suitably comprises an elongate ultrasonic horn 32 disposed within the interior space 14 of the housing 12 intermediate the inlet ports 22, 23 and the outlet ports 24, 25 for complete submersion within the gas-liquid solution, and more suitably, in the illustrated embodiment, it is aligned coaxially with the housing. The ultrasonic horn 32 has an outer surface 34 that together with an inner surface 36 of the sidewall 30 of the housing 12 defines a flow path 38 within the interior space 14 of the housing along which the gas-liquid solution flow past the ultrasonic horn within the housing (this portion of the flow path being broadly referred to herein as the ultrasonic treatment zone).


The ultrasonic horn 32 has an upper end defining the terminal end 28 of the waveguide assembly 16 and a longitudinally opposite lower end 40. It is particularly suitable that the waveguide assembly 16 also comprises a booster 42 coaxially aligned with and connected at an upper end 44 thereof to the lower end 40 of the ultrasonic horn 32. It is understood, however, that the waveguide assembly 16 may comprise only the ultrasonic horn 32 and remain within the scope of this disclosure. It is also contemplated that the booster 42 may be disposed entirely exterior of the housing 12, with the ultrasonic horn 32 mounted on the housing without departing from the scope of this disclosure.


The waveguide assembly 16, and more particularly the booster 42, is suitably mounted on the housing 12 at the inlet end 18 thereof by a mounting member (not shown) that is configured to vibrationally isolate the waveguide assembly (which vibrates ultrasonically during operation thereof) from the housing. That is, the mounting member inhibits the transfer of longitudinal and transverse mechanical vibration of the waveguide assembly 16 to the housing 12 while maintaining the desired transverse position of the waveguide assembly (and in particular the ultrasonic horn 32) within the interior space 14 of the housing and allowing both longitudinal and transverse displacement of the ultrasonic horn 32 within the housing. The mounting member also at least in part (e.g., along with the booster 42 and/or lower end 40 of the ultrasonic horn 32) closes the inlet end 18 of the housing 12. Examples of suitable mounting member configurations are illustrated and described in U.S. Pat. No. 6,676,003, the entire disclosure of which is incorporated herein by reference to the extent it is consistent herewith.


In one suitable embodiment, the mounting member is of single-piece construction. Even more suitably, the mounting member may be formed integrally with the booster 42 (and more broadly with the waveguide assembly 16). However, it is understood that the mounting member may be constructed separately from the waveguide assembly 16 and remain within the scope of this disclosure. It is also understood that one or more components of the mounting member may be separately constructed and suitably connected or otherwise assembled together.


The mounting member may be further constructed to be generally rigid (e.g., resistant to static displacement under load) so as to hold the waveguide assembly 16 in proper alignment within the interior space 14 of the housing 12. For example, the rigid mounting member in one embodiment may be constructed of a non-elastomeric material, more suitably metal, and even more suitably the same metal from which the booster (and more broadly the waveguide assembly 16) is constructed. The term “rigid” is not, however, intended to mean that the mounting member is incapable of dynamic flexing and/or bending in response to ultrasonic vibration of the waveguide assembly 16. In other embodiments, the rigid mounting member may be constructed of an elastomeric material that is sufficiently resistant to static displacement under load but is otherwise capable of dynamic flexing and/or bending in response to ultrasonic vibration of the waveguide assembly 16.


A suitable ultrasonic drive system includes at least an exciter 46 and a power source 48 disposed exterior of the housing 12 and operatively connected to the booster 42 to energize the waveguide assembly 16 to mechanically vibrate ultrasonically. In one embodiment, the drive system is capable of operating the waveguide assembly 16 at a frequency in the range of about 15 kHz to about 100 kHz, more suitably in the range of about 15 kHz to about 60 kHz, and even more suitably in the range of about 20 kHz to about 40 kHz. Such ultrasonic drive systems are well known to those skilled in the art and need not be further described herein. Examples of suitable ultrasonic drive systems include a Model 20A3000 system available from Dukane Ultrasonics of St. Charles, Ill., and a Model 2000CS system available from Herrmann Ultrasonics of Schaumberg, Ill.


With particular reference to FIGS. 2 and 3, the ultrasonic horn 32 has two or more (i.e., a plurality of) agitating members 50, 50′ connected to the ultrasonic horn 32 and extending at least in part transversely outward from the outer surface 34 of the ultrasonic horn in longitudinally spaced relationship with each other. Five such agitating members 50, 50′ can be seen in FIG. 1. The ultrasonic horn 32 is suitably sized to have a length equal to about one-half of the resonating wavelength (otherwise commonly referred to as one-half wavelength) of the ultrasonic horn. It is understood, however, that the ultrasonic horn 32 may be sized to have any increment of one-half wavelength without departing from the scope of this disclosure.


In the illustrated embodiment, four of the five agitating members 50 comprise a series of four washer-shaped rings that extend continuously about the circumference of the ultrasonic horn 32 in longitudinally spaced relationship with each other and transversely (e.g., radially in the illustrated embodiment) outward from the outer surface 34 of the ultrasonic horn. In this manner, the vibrational displacement of each of the agitating members 50 relative to the ultrasonic horn 32 is relatively uniform about the circumference of the ultrasonic horn. It is understood, however, that the agitating members 50 need not be continuous about the circumference of the ultrasonic horn 32. For example, the agitating members 50 may instead be in the form of spokes, blades, fins or other discrete structural members that extend transversely outward from the outer surface 34 of the ultrasonic horn 32.


As illustrated in FIG. 1, the other one of the agitating members 50′ (i.e., the central agitating member) has a T-shape. Specifically, the agitating member 50′ disposed at a nodal region of the ultrasonic horn 32, as described more fully below, has a T-shape. It has been found that agitating members 50′ having a T-shape, generate a strong radial (e.g., horizontal) acoustic wave that further increases the cavitation effect as described more fully herein.


It is understood that the number of agitating members 50, 50′ (e.g., the four rings and one T-shaped member in the illustrated embodiment) may be less than or more than five without departing from the scope of this disclosure. It is also understood that the longitudinal spacing between the agitating members 50, 50′ may be other than as illustrated in FIG. 1 and described above (e.g., either closer or spaced further apart). Furthermore, while the agitating members 50, 50′ illustrated in FIG. 1 are equally longitudinally spaced from each other, it is alternatively contemplated that where more than two agitating members are present the spacing between longitudinally consecutive agitating members need not be uniform to remain within the scope of this disclosure.


The locations of the agitating members 50, 50′ along the length of the ultrasonic horn 32 are at least in part a function of the intended vibratory displacement of the agitating members upon vibration of the ultrasonic horn. For example, in the illustrated embodiment of FIG. 1, the ultrasonic horn 32 has a nodal region located generally longitudinally centrally of the ultrasonic horn. As used herein, the “nodal region” of the ultrasonic horn 32 refers to a longitudinal region or segment of the ultrasonic horn along which little (or no) longitudinal displacement occurs during ultrasonic vibration of the ultrasonic horn and transverse (e.g., radial in the illustrated embodiment) displacement of the ultrasonic horn is generally maximized. Transverse displacement of the ultrasonic horn 32 suitably comprises transverse expansion of the ultrasonic horn but may also include transverse movement (e.g., bending) of the ultrasonic horn.


In the illustrated embodiment of FIG. 1, the configuration of the one-half wavelength ultrasonic horn 32 is such that the nodal region is particularly defined by a nodal plane (i.e., a plane transverse to the ultrasonic horn at which no longitudinal displacement occurs while transverse displacement is generally maximized) is present. This plane is also sometimes referred to as a “nodal point”. Accordingly, agitating members 50 (e.g., in the illustrated embodiment, the rings) that are disposed longitudinally further from the nodal region of the ultrasonic horn 32 will experience primarily longitudinal displacement while the agitating member 50′ that are longitudinally nearer to or at the nodal region (e.g., the T-shaped agitating member) will experience an increased amount of transverse displacement and a decreased amount of longitudinal displacement relative to the longitudinally distal agitating members. It is understood that the ultrasonic horn 32 may be configured so that the nodal region is other than centrally located longitudinally on the ultrasonic horn member without departing from the scope of this disclosure. It is also understood that one or more of the agitating members 50, 50′ may be longitudinally located on the ultrasonic horn so as to experience both longitudinal and transverse displacement relative to the ultrasonic horn 32 upon ultrasonic vibration of the ultrasonic horn.


The agitating members 50, 50′ are sufficiently constructed (e.g., in material and/or dimension such as thickness and transverse length, which is the distance that the agitating member extends transversely outward from the outer surface 34 of the ultrasonic horn 32) to facilitate dynamic motion, and in particular dynamic flexing/bending of the agitating members in response to the ultrasonic vibration of the ultrasonic horn. In one particularly suitable embodiment, for a given ultrasonic frequency at which the waveguide assembly 16 is to be operated in the housing (otherwise referred to herein as the predetermined frequency of the waveguide assembly) and a particular gas-liquid solution to be treated within the housing 12, the agitating members 50, 50′ and ultrasonic horn 32 are suitably constructed and arranged to operate the agitating members in what is referred to herein as an ultrasonic cavitation mode at the predetermined frequency.


As used herein, the ultrasonic cavitation mode of the agitating members 50, 50′ refers to the vibrational displacement of the agitating members sufficient to result in cavitation of the liquid flowing through the housing 12 at the predetermined ultrasonic frequency. For example, where the liquid flowing within the housing 12 comprises an air-water solution, and the ultrasonic frequency at which the waveguide assembly 16 is to be operated (i.e., the predetermined frequency) is about 20 kHZ, one or more of the agitating members 50, 50′ are suitably constructed to provide a vibrational displacement of at least 1.75 mils (i.e., 0.00175 inches, or 0.044 mm) to establish a cavitation mode of the agitating members. It is understood that the waveguide assembly 16 may be configured differently (e.g., in material, size, etc.) to achieve a desired cavitation mode associated with the particular gas-liquid solution being treated. For example, as the viscosity of the gas-liquid solution being treated changes, the cavitation mode of the agitating members may need to be changed.


Ultrasonic cavitation refers to the formation, growth and implosive collapse of bubbles in the solution due to ultrasonic energization thereof. Such cavitation results from pre-existing weak points in the solution, such as gas-filled crevices in suspended particulate matter or transient microbubbles from prior cavitation events. As ultrasound passes through the solution, the expansion cycles exert negative pressure on the solution, pulling the molecules away from one another. Where the ultrasonic energy is sufficiently intense, the expansion cycle creates cavities in the solution when the negative pressure exceeds the local tensile strength of the solution, which varies according to the type and purity of solution.


Small gas bubbles formed by the initial cavities grow upon further absorption of the ultrasonic energy. Under the proper conditions, these bubbles undergo a violent collapse, generating very high pressures and temperatures. In some fields, such as what is known as sonochemistry, chemical reactions take advantage of these high pressures and temperatures brought on by cavitation. In addition, the growth and violent collapse of the bubbles themselves provides a desirably rigorous agitation of the gas-liquid solution.


In particularly suitable embodiments, the cavitation mode of the agitating members 50, 50′ corresponds to a resonant mode of the agitating members whereby vibrational displacement of the agitating members is amplified relative to the displacement of the ultrasonic horn 32. However, it is understood that cavitation may occur without the agitating members 50, 50′ operating in their resonant mode, or even at a vibrational displacement that is greater than the displacement of the ultrasonic horn 32, without departing from the scope of this disclosure.


In general, the ultrasonic horn 32 may be constructed of a metal having suitable acoustical and mechanical properties. Examples of suitable metals for construction of the ultrasonic horn 32 include, without limitation, aluminum, monel, titanium, stainless steel, and some alloy steels. It is also contemplated that all or part of the ultrasonic horn 32 may be coated with another metal such as silver, platinum, gold, palladium, lead dioxide, and copper to mention a few. In one particularly suitable embodiment, the agitating members 50, 50′ are constructed of the same material as the ultrasonic horn 32, and are more suitably formed integrally with the ultrasonic horn. In other embodiments, one or more of the agitating members 50, 50′ may instead be formed separate from the ultrasonic horn 32 and connected thereto.


While the agitating members 50, 50′ (e.g., the rings) illustrated in FIG. 1 are relatively flat, i.e., relatively rectangular in cross-section, it is understood that the rings may have a cross-section that is other than rectangular without departing from the scope of this disclosure. The term “cross-section” is used in this instance to refer to a cross-section taken along one transverse direction (e.g., radially in the illustrated embodiment) relative to the ultrasonic horn's outer surface 34. Additionally, although the agitating members 50 (e.g., the rings) illustrated in FIG. 1 are constructed only to have a transverse component, it is contemplated that one or more of the agitating members 50′ may have at least one longitudinal (e.g., axial) component to take advantage of transverse vibrational displacement of the ultrasonic horn 32 (e.g., at and near the nodal region of the ultrasonic horn illustrated in FIG. 1) during ultrasonic vibration of the waveguide assembly 16 (e.g., the T-shaped agitating member).


A baffle assembly, generally indicated at 60, is suitably disposed within the interior space 14 of the housing 12, and in particular generally transversely adjacent the inner surface 36 of the sidewall 30 of the housing and in generally transversely opposed relationship with the ultrasonic horn 32. In one suitable embodiment, the baffle assembly 60 comprises one or more baffle members 62 extending at least in part transversely inward from the inner surface 36 of the sidewall 30 of the housing 12 toward the ultrasonic horn 32. More suitably, the one or more baffle members 62 extend transversely inward from the housing's inner surface 36 to a position longitudinally intersticed with the agitating members 50, 50′ that extend outward from the outer surface 34 of the ultrasonic horn 32. The term “longitudinally intersticed” is used herein to mean that a longitudinal line drawn parallel to the longitudinal axis of the ultrasonic horn 32 passes through both the agitating members 50, 50′ and the baffle members 62. As one example, in the illustrated embodiment the baffle assembly 60 comprises four, generally annular baffle members 62 (i.e., extending continuously about the ultrasonic horn 32) longitudinally intersticed with the five agitating members 50, 50′.


It will be appreciated that the baffle members 62 thus extend into the flow path 38 of gas-liquid solution flowing within the interior space 14 of the housing 12 past the ultrasonic horn 32 (e.g., within an ultrasonic treatment zone). As such, the baffle members 62 inhibit the gas-liquid solution against flowing along the inner surface 36 of the housing's sidewall 30 past the ultrasonic horn 32, and more suitably the baffle members facilitate the flow of the gas-liquid solution transversely inward toward the ultrasonic horn for flowing over the agitating members 50, 50′ of the ultrasonic horn to thereby facilitate ultrasonic energization (i.e., agitation) of the gas-liquid solution.


It is contemplated that the baffle members 62 need not be annular or otherwise extend continuously about the ultrasonic horn. For example, the baffle members 62 may extend discontinuously about the ultrasonic horn 32, such as in the form of spokes, bumps, segments or other discrete structural formations that extend transversely inward from adjacent the inner surface 36 of the sidewall 30 of the housing 12. The term “continuously” in reference to the baffle members 62 extending continuously about the ultrasonic horn 32 does not exclude a baffle members as being two or more arcuate segments arranged in end-to-end abutting relationship, i.e., as long as no significant gap is formed between such segments. Suitable baffle member configurations are disclosed in U.S. application Ser. No. 11/530,311 (filed Sep. 8, 2006), which is hereby incorporated by reference to the extent it is consistent herewith.


While the baffle members 62 illustrated in FIGS. 1-3 are each generally flat, e.g., having a generally thin rectangular cross-section, it is contemplated that one or more of the baffle members may each be other than generally flat or rectangular in cross-section to further facilitate the flow of gas bubbles within the interior space 14 of the housing 12. The term “cross-section” is used in this instance to refer to a cross-section taken along one transverse direction (e.g., radially in the illustrated embodiment, relative to the ultrasonic horn's outer surface 34).


As illustrated in FIG. 1, the gas treatment system 10 further comprises a gas delivery system that is operable to direct the gas into the interior space 14 of the housing 12 from a continuous gas source 86, e.g., ambient air. In one suitable embodiment, the gas delivery system comprises one or more gas pumps 88 (one gas pump being illustrated in FIG. 1) operable to pump the gas from the continuous source 86 thereof to the inlet end 18 of the housing 12 via suitable conduits (not shown). It is understood that the gas delivery system may be configured to deliver gas from more than one source 86 to the housing without departing from the scope of this disclosure. In one specific application, as noted above, ambient air is treated to kill, remove, and/or oxidize organics and/or microorganisms present in the air. In this application, gas pump 88 can be used to deliver ambient air to the interior space 14 of the housing 12 at a generally continuous flow. It is understood, however, that gas can be delivered to the housing 12 from a finite source, such as a gas cylinder or other container, without departing from the scope of this invention. That is, the gas treatment system 10 can be operated to treat batches of gases.


The illustrated gas treatment system also comprises a liquid delivery system. In one suitable embodiment, the liquid delivery system is a generally closed, continuous flow system in which liquid is cycled through the interior space 14 of the housing 12. The liquid delivery system suitably comprises a liquid pump 89, a particulate filter 91, a heat exchanger 93, and suitable conduit (not shown). The liquid pump 89 draws liquid from the interior space 14 of the housing 12 through the liquid outlet port 25 and drives the liquid through the particulate filter 91, the heat exchanger 93 and back into the interior space 14 of the housing 12. A suitable liquid supply 95 provides a sufficient amount of the liquid to the gas treatment system 10. It is understood that the liquid delivery system can have more of fewer components without departing from the scope of this invention.


It is also contemplated that the liquid delivery system can be an open loop system wherein a continuous supply of liquid is delivered to the interior space 14 of the housing 12 via the liquid inlet port 23, and the liquid exiting the interior space of the housing via the liquid outlet port 25 is discharged to a suitable container, treatment system, or drain. It is also contemplated that in some embodiments of the gas treatment system 10 the liquid delivery system can be omitted. In this configuration, the liquid is contained within the interior space 14 of the housing 12.


The particulate filter 91 is provided to remove particulate matter (e.g., suspended solids) from the liquid. The particulate filter 91 can include one or more filter units, for example, in the one embodiment, a first filter unit may be constructed to filter out particles sized greater than about 0.5 microns and a second filter unit downstream from the first filter unit may be constructed to further filter out particles sized greater than about 0.2 microns. It is understood, however, that only one, or more than two filter units may be used, or that the filter units may be omitted altogether. The heat exchanger 93 is provided to alter and/or maintain the temperature of the liquid (e.g., cool the liquid), which may be elevated after passing through the interior space 14 of the housing 14.


In one suitable embodiment, the gas treatment system further comprises an ultraviolet light source 66 for emitting ultraviolet light to irradiate the gas-liquid solution received in the interior space 14 of the housing 12 as it flows through the interior space. In one suitable embodiment, the ultraviolet light source 66 is positioned for emitting ultraviolet light substantially throughout the entire interior space 14 of the housing 12. For example, the ultraviolet light source 66 may have a length that is substantially equal to the length of the housing 12 and is positioned for emitting ultraviolet light into the interior space 14 along the length of the housing. In another configuration and as illustrated in FIG. 1, one or more reflectors (not shown) may be disposed relative to the interior space 14 of the housing 12 to deflect ultraviolet light emitted by the ultraviolet light source 66 throughout the length of the interior space of the housing. In this configuration, the length of the ultraviolet light source 66 can be substantially less than the length of the housing 12.


As seen in FIG. 1, the ultraviolet light source 66 is suitably disposed exterior of the housing 12 and is positioned adjacent the transparent portion 26 thereof (i.e., the portion of the housing constructed of quartz glass). The transparent portion 26 of the housing 12 is thus sized and shaped for allowing substantially all of the ultraviolet light emitted by the ultraviolet light source 66 into the interior space 14 of the housing 12. It is understood that the transparent portion 26 may comprise only a portion of the housing 12 or that it may comprise the entire housing and remain within the scope of this disclosure.


As illustrated in FIG. 1, the ultraviolet light source 66 is positioned to emit ultraviolet light into the interior space 14 of the housing 12 toward the outlet end 20 thereof and just beyond the terminal end 28 of the ultrasonic horn 32. Gas-liquid solution passing through the interior space 14 of the housing 12 adjacent the ultraviolet light source 66 is first highly energized (e.g., at least agitated and more suitably subjected to cavitation) by the ultrasonic horn 32. While the ultraviolet light is deflected or otherwise irradiated throughout the interior space 14 of the housing 12, the most intense region of ultraviolet light is generally adjacent the outlet end 20 of the housing. It is contemplated that a baffling system (not shown) can be disposed within the interior space 14 of the housing 12 adjacent the outlet end 20 thereof to provide a tortuous flow path for the gas-liquid solution thereby increasing the dwell time during which the air-liquid solution is subjected to ultraviolet light.


In one suitable embodiment, the ultraviolet light source 66 is operable to emit ultraviolet light at a wavelength in the range of about 172 nanometers and about 600 nanometers. More suitably, e.g., the light source 66 is operable to emit light at a wavelength in the range of about 172 nanometers to about 300 nanometers where the gas-liquid solutions to be treated is relatively colorless or near colorless. In another suitable embodiment, the ultraviolet light source 66 is operable to emit ultraviolet light at a wavelength in the range of about 300 nanometers to about 600 nanometers for gas-liquid solutions having color and highly viscous gas-liquid solutions. The ultraviolet light source 66 is operatively connected to a suitable power supply unit 70 for supplying sufficient electrical power to the ultraviolet light source to generate and emit ultraviolet light into the interior space 14 of the housing 12. It is contemplated that the ultraviolet light source 66 can be omitted from some configurations of the gas treatment system 10 and remain within the scope of the present invention.


The gas treatment system 10 in one particularly suitable embodiment comprises an oxidizing agent source for delivering an oxidizing agent into the interior space 14 of the housing 12. For example, hydrogen peroxide and ozone may each be delivered into the interior space 14 of the housing 12. The hydrogen peroxide is delivered using a suitable pump 72, which delivers hydrogen peroxide from a supply container 74 and directs the hydrogen peroxide through a hydrogen peroxide inlet port 76 into the interior space 14 of the housing 12. Hydrogen peroxide (H2O2) decomposes to hydroxyl radicals (.OH), as shown below. The hydroxyl radical is an aggressive oxidant that reacts with organics.

H2O2→2(.OH)


An ozone generator 80 is provided in the gas treatment system 10 to generate ozone for delivery into the interior space 14 of the housing 12 through an ozone inlet port 82. Ozone (O3) decomposes in water to form a superoxide radical ion (O2), which is a strong oxidizing agent, and a hydroperoxide radical (O2H). The hydroperoxide radical further decomposes to form another superoxide radical ion (O2) and a hydrogen ion (H+).

O3+OH→O2+O2H
O2Hcustom characterO2+H+


It is contemplated that either one of the hydrogen peroxide and the ozone may be used by itself in the gas treatment system 10 within the scope of this disclosure. It is also contemplated that other oxidation agents may be used or that, in some embodiments, the oxidation agents may be omitted altogether.


The hydrogen peroxide and ozone are delivered in the illustrated embodiment into the liquid intake zone 29 adjacent the inlet end 18 of the housing 12 where they are mixed with the gas and liquid entering the interior space via the inlets 22, 23 to form the gas-liquid solution. The gas-liquid solution flows along the flow path 38 (upward in the orientation of the illustrated embodiment) past the ultrasonic horn 32 where it is ultrasonically energized by the ultrasonic horn, agitating members 50, 50′, and baffle members 62 to thereby agitate and more suitably cavitate the solution. The solution in its cavitated state is irradiated by ultraviolet light emitted by the ultraviolet light source 66.


In operation according to one embodiment of the gas treatment system 10 of the present disclosure, the gas treatment system is used to treat organics and/or microorganisms in a gas, and more suitably, ambient air. Specifically, ambient air is delivered (e.g., by the gas pump 88 described above) via conduits to one or more gas inlet ports 22 formed in the housing 12. Water, or other liquid, is also delivered (e.g., by the liquid pump 89 described above) via conduits to one or more liquid inlet ports 23 formed in the housing 12. Ozone and hydrogen peroxide are delivered into the housing 12 to mix with the ambient air and water. As the ambient air enters the interior space 14 of the housing 12 via the gas inlet port 22, the orientation of the inlet port can induce a relatively swirling action thereby mixing the ambient air, ozone, hydrogen peroxide, and water together to form an air-water (i.e., gas-liquid) solution. It is contemplated that one or more of the components used to form the air-water solution can be mixed together before being delivered to the interior space 14 of the housing 12.


The air-water solution flows upward within the interior space 14 of the housing 12 and past the waveguide assembly 16, and more particularly the ultrasonic horn 32. The ultrasonic horn 32 is driven by the drive system to vibrate at a predetermined ultrasonic frequency. In response to ultrasonic excitation of the ultrasonic horn 32, the agitating members 50, 50′ that extend outward from the outer surface 34 of the ultrasonic horn dynamically flex/bend relative to the ultrasonic horn, or displace transversely (depending on the longitudinal position of the agitating member relative to the nodal region of the ultrasonic horn).


The air-water solution flows longitudinally upward along the flow path 38 between the outer surface 34 of the ultrasonic horn 32 and the inner surface 36 of the housing's sidewall 30 so that the ultrasonic vibration and the dynamic motion of the agitating members 50, 50′ agitate the air-water solution and more suitably cause cavitation in the air-water solution. The baffle members 62 of the baffle assembly 60 disrupt the longitudinal flow of the air-water solution along the inner surface 36 of the housing's sidewall 30 and repeatedly direct the flow transversely inward to flow over the vibrating agitating members. As mentioned above, the ultrasonic horn 32 causes the cavitation in the air-water solution which enhances the treatment of the air by the hydrogen peroxide and the ozone. The air-water solution, while it is cavitated (i.e., energized), flows past the ultraviolet light source 66. The ultraviolet light source 66 irradiates the gas-liquid solution for further treatment.


The use of ultraviolet light in this system 10 increases the efficiency and the efficacy of the degradation of the impurities in the air-water solution. First, the ultraviolet light photochemically cleaves some of the ozone and peroxide agents to produce higher concentrations of the superoxide and radicals which work in conjunction with the sonochemistry to break down the impurities in the air-water solution. Secondly, the nature of the high energy ultraviolet light starts the breakdown of the impurities by their absorption of the radiation followed by scission of the chemical bonds. For example, with respect to dyes and other colored agents, the sonochemistry will further breakdown these compound fragments, due to these intermediates being chemically unstable and therefore it is easier for them to undergo further degradation in the ultrasonic system.


An ultraviolet lamp of the ultraviolet light source 66 can be adjusted to produce either a broad ultraviolet light emission or specific narrower wavelength range by careful selection of the lamp bulb. For example, Fusion UV Systems, Inc. of Gaithersburg, Md. offers a series of ultraviolet lamp bulbs with the following emission ranges:


H-bulb 210-315 nanometers


D-bulb 350-450 nanometers


V-bulb 400-450 nanometers


M-bulb 365 nanometers and 406 nanometers.


After treatment, the gas and liquid phases of the air-water solution are separated. The air exits the interior space 14 of the housing 12 through the gas outlet port 24. The air, which has been rid of impurities, is conditioned for any suitable use, e.g., respiratory air for a medical patient. The separated water exits the interior space 14 of the housing 12 through the liquid outlet port 25. More specifically, the water is drawn from the housing 12 by the liquid pump 89. The water is then driven through the particulate filter 91, the heat exchanger 93, and back into the interior space 14 of the housing 12 where it is again mixed within incoming ambient air.


The gas treatment system 10 may also optionally be combined with a gas post-processing system in fluid communication with the outlet end 20 of the housing for further processing the ambient air after the air exits the housing. For example, one or more air filter units 100 may be disposed along the air flow path downstream of the housing 12 to filter out particulate material, such as dirt, debris or other contaminates that may be present in the air. It is understood that the filter units may be omitted altogether.


In one embodiment, such as when hydrogen peroxide is introduced into the housing 12 to be used as an oxidizing agent for removing impurities from the gas, the residual hydrogen peroxide may need to be removed from the exit stream by a post processing unit that reacts with the hydrogen peroxide. For example, this post processing unit may include a platinum or silver surface (not shown) that decomposes any residual hydrogen peroxide. Similarly, when ozone is introduced to aid in the removal of impurities, a post processing unit, such as a destruct unit 102, may be used to decompose any ozone exiting the housing along with the ambient air.


Following treatment and/or post treatment, the cleaned ambient air may be directed to a storage container (e.g., cylinder), used in a process, or directed to an air supply system.


When introducing elements of the present invention or preferred embodiments thereof, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.


As various changes could be made in the above constructions and methods without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

Claims
  • 1. A process for treating a gas, the process comprising: delivering a gas to be treated to an interior space of a housing via a gas inlet port of the housing, wherein the gas, as it is delivered to the interior space, includes at least one of microorganisms and organics;mixing the gas with a liquid within the interior space of the housing to form a gas-liquid solution;ultrasonically energizing the gas-liquid solution within the housing by operating an ultrasonic horn disposed within the interior space of the housing at an ultrasonic frequency to facilitate breaking down of said at least one of microorganisms and organics in the gas of the gas-liquid solution; andirradiating the energized gas-liquid solution in the interior space of the housing using an ultraviolet light source to facilitate breaking down of said at least one of microorganisms and organics in the gas of the gas-liquid solution;removing the gas from the interior space of the housing via a gas outlet port of the housing after said ultrasonically energizing the gas-liquid solution and said irradiating the energized gas-liquid solution.
  • 2. The process of claim 1 further comprising introducing an oxidizing agent into the interior space of the housing to mix with the gas-liquid solution.
  • 3. The process of claim 1 wherein delivering a gas to be treated to an interior space of a housing comprises delivering air to be treated to the interior space of the housing.
  • 4. The process of claim 3 wherein mixing the gas with a liquid within the interior space of the housing to form a gas-liquid solution comprises mixing air with water within the interior space of the housing to form an air- water solution.
  • 5. The process of claim 1 wherein the ultraviolet light source is located relative to the ultrasonic horn and the gas outlet port such that the ultraviolet light source irradiates the gas-liquid solution while the gas-liquid solution is ultrasonically energized by the ultrasonic waveguide assembly.
  • 6. The process of claim 1 wherein the housing has at least one liquid inlet port for receiving liquid into the interior space of the housing and at least one liquid outlet port for allowing liquid to exit the interior space of the housing, the housing further having an inlet end and an opposite outlet end, wherein the gas inlet port and the liquid inlet port are at the inlet end of the housing, and the gas outlet port and the liquid outlet port are at the outlet end of the housing.
  • 7. The process of claim 6 wherein the housing has a longitudinal axis orientated vertically such that the inlet end of the housing constitutes a lower end and the outlet end of the housing constitutes an upper end.
  • 8. The process of claim 1 wherein the ultraviolet light source is operable to emit ultraviolet light at a wavelength in the range of about 172 nanometers to about 600 nanometers.
  • 9. The process of claim 8 wherein the ultraviolet light source is operable to emit ultraviolet light at a wavelength in the range of about 172 nanometers to about 300 nanometers.
  • 10. The process of claim 8 wherein the ultraviolet light source is capable of emitting ultraviolet light at a wavelength in the range of about 300 nanometers to about 600 nanometers.
  • 11. The process of claim 1 wherein at least a portion of the housing comprises a transparent material for allowing ultraviolet light to irradiate through the housing into the interior space thereof to facilitate said treating of the gas in the gas-liquid solution in the interior space of the housing, the ultraviolet light source being disposed exterior of the housing and adjacent the transparent portion of the housing.
  • 12. The process of claim 1 wherein the ultrasonic horn has an outer surface located for contact with the gas-liquid solution within the housing, and a plurality of discrete agitating members in contact with and extending transversely outward from the outer surface in spaced relationship with each other, the agitating members and the ultrasonic horn being constructed and arranged for dynamic motion of the agitating members relative to the ultrasonic horn upon ultrasonic vibration of the ultrasonic horn.
  • 13. The process of claim 2 wherein the oxidizing agent comprises at least one of hydrogen peroxide and ozone.
  • 14. The process of claim 1 further comprising a gas delivery system for delivering gas to be treated to the interior space of the housing via the gas inlet port, and a liquid delivery system for delivering the liquid to the interior space of the housing via the liquid inlet port.
  • 15. The process of claim 1 wherein the housing comprises a mixing zone for mixing the gas and the liquid.
  • 16. The process of claim 1 further comprising a liquid delivery system for delivering liquid into the interior space of the housing.
  • 17. The process of claim 16 wherein the housing has at least one liquid inlet port for receiving liquid into the interior space of the housing and at least one liquid outlet port for allowing liquid to exit the interior space of the housing, wherein the liquid delivery system is a closed loop system in which liquid is caused to flow through the housing generally from the liquid inlet port to the liquid outlet port and flow exterior of the housing generally from the liquid outlet port back to the liquid inlet port.
  • 18. The process of claim 17 wherein the liquid delivery system comprises a pump and a heat exchanger.
  • 19. The process of claim 14 wherein the gas delivery system comprises a gas pump.
  • 20. The process of claim 14 wherein the liquid delivery system is a closed loop system in which the liquid is caused to flow through the housing generally from the liquid inlet port to the liquid outlet port and flow exterior of the housing generally from the liquid outlet port back to the liquid inlet port.
  • 21. The process of claim 20 wherein the liquid delivery system comprises a pump and a heat exchanger.
  • 22. The process of claim 21 wherein the liquid delivery system further comprises a particulate filter.
US Referenced Citations (263)
Number Name Date Kind
2115056 Samuel Apr 1938 A
2307206 Fischer Jan 1943 A
2584053 Seavey et al. Jan 1952 A
2615692 Muller Oct 1952 A
2620894 Peterson et al. Dec 1952 A
2661192 Horsley et al. Dec 1953 A
2946981 O'Neill Jul 1960 A
3066232 Branson Nov 1962 A
3160138 Platzman Dec 1964 A
3202281 Weston Aug 1965 A
3239998 Carter et al. Mar 1966 A
3246881 Davidson et al. Apr 1966 A
3249453 Schnoring et al. May 1966 A
3273631 Neuman Sep 1966 A
3275787 Newberry Sep 1966 A
3278165 Gaffney Oct 1966 A
3284991 Ploeger et al. Nov 1966 A
3325348 Bennett Jun 1967 A
3326470 Loudin et al. Jun 1967 A
3338992 Kinney Aug 1967 A
3341394 Kinney Sep 1967 A
3425951 Ishiwata Feb 1969 A
3463321 VanIngen Aug 1969 A
3479873 Hermanns Nov 1969 A
3490584 Balamuth Jan 1970 A
3502763 Hartman Mar 1970 A
3519251 Hammitt et al. Jul 1970 A
3542345 Kuris Nov 1970 A
3542615 Dobo et al. Nov 1970 A
3567185 Ross et al. Mar 1971 A
3591946 Loe Jul 1971 A
3664191 Hermanns May 1972 A
3692618 Dorschner et al. Sep 1972 A
3782547 Dieter Jan 1974 A
3802817 Matsuki et al. Apr 1974 A
3865350 Burtis Feb 1975 A
3873071 Tatebe Mar 1975 A
3904392 VanIngen et al. Sep 1975 A
4035151 Czerny et al. Jul 1977 A
4062768 Elliot Dec 1977 A
4070167 Barbee et al. Jan 1978 A
4122797 Kawamura et al. Oct 1978 A
4168295 Sawyer Sep 1979 A
4218221 Cottell Aug 1980 A
4249986 Obeda Feb 1981 A
4259021 Goudy, Jr. Mar 1981 A
4260389 Lister Apr 1981 A
4266879 McFall May 1981 A
4340563 Appel et al. Jul 1982 A
4372296 Fahim Feb 1983 A
4398925 Trinh et al. Aug 1983 A
4425718 Kawaguchi Jan 1984 A
4511254 North et al. Apr 1985 A
4556467 Kuhn Dec 1985 A
4612016 Jaeger et al. Sep 1986 A
4612018 Tsuboi et al. Sep 1986 A
4663220 Wisneski et al. May 1987 A
4673512 Schram Jun 1987 A
4693879 Yoshimura et al. Sep 1987 A
4699636 Bofinger et al. Oct 1987 A
4706509 Riebel Nov 1987 A
4708878 Hagelauer et al. Nov 1987 A
4726522 Kokubo et al. Feb 1988 A
4743361 Schram May 1988 A
4848159 Kennedy et al. Jul 1989 A
4877516 Schram Oct 1989 A
4879011 Schram Nov 1989 A
4929279 Hays May 1990 A
RE33524 Schram Jan 1991 E
4983045 Taniguchi Jan 1991 A
5006266 Schram Apr 1991 A
5026167 Berliner, III Jun 1991 A
5032027 Berliner, III Jul 1991 A
5059249 Hays Oct 1991 A
5096532 Neuwirth et al. Mar 1992 A
5110403 Ehlert May 1992 A
5122165 Wang et al. Jun 1992 A
5164094 Stuckart Nov 1992 A
5169067 Matsusaka et al. Dec 1992 A
5242557 Jones et al. Sep 1993 A
5258413 Isayev Nov 1993 A
5269297 Weng et al. Dec 1993 A
5326164 Logan Jul 1994 A
5330100 Malinowski Jul 1994 A
5335449 Beatty Aug 1994 A
5372634 Monahan Dec 1994 A
5373212 Beau Dec 1994 A
5375926 Omasa Dec 1994 A
5391000 Taniguchi Feb 1995 A
5466722 Stoffer et al. Nov 1995 A
5519670 Walter May 1996 A
5536921 Herdrick et al. Jul 1996 A
5583292 Karbach et al. Dec 1996 A
5585565 Glascock et al. Dec 1996 A
5665383 Grinstaff et al. Sep 1997 A
5681457 Mahoney Oct 1997 A
5711888 Trampler et al. Jan 1998 A
5770124 Marecki et al. Jun 1998 A
5803270 Brodeur Sep 1998 A
5810037 Sasaki et al. Sep 1998 A
5831166 Kozuka et al. Nov 1998 A
5853456 Bryan et al. Dec 1998 A
5868153 Cohen et al. Feb 1999 A
5873968 Pike et al. Feb 1999 A
5902489 Yasuda et al. May 1999 A
5916203 Brandon et al. Jun 1999 A
5922355 Parikh et al. Jul 1999 A
5935883 Pike Aug 1999 A
5937906 Kozyuk Aug 1999 A
5964926 Cohen Oct 1999 A
5979664 Brodeur Nov 1999 A
6010592 Jameson et al. Jan 2000 A
6020277 Jameson Feb 2000 A
6035897 Kozyuk Mar 2000 A
6053028 Kraus, Jr. et al. Apr 2000 A
6053424 Gipson et al. Apr 2000 A
6055859 Kozuka et al. May 2000 A
6060416 Kobata May 2000 A
6074466 Iwasa Jun 2000 A
6090731 Pike et al. Jul 2000 A
6106590 Ueno et al. Aug 2000 A
6169045 Pike et al. Jan 2001 B1
6200486 Chahine et al. Mar 2001 B1
6200488 Crowley et al. Mar 2001 B1
6218483 Muthiah et al. Apr 2001 B1
6221258 Feke et al. Apr 2001 B1
6254787 Kimura et al. Jul 2001 B1
6266836 Gallego Juarez et al. Jul 2001 B1
6315215 Gipson et al. Nov 2001 B1
6322240 Omasa Nov 2001 B1
6332541 Coakley et al. Dec 2001 B1
6361697 Coury et al. Mar 2002 B1
6368414 Johnson Apr 2002 B1
6380264 Jameson et al. Apr 2002 B1
6383301 Bell et al. May 2002 B1
6450417 Gipson et al. Sep 2002 B1
6467350 Kaduchak et al. Oct 2002 B1
6482327 Mori et al. Nov 2002 B1
6506584 Chandler et al. Jan 2003 B1
6547903 McNichols et al. Apr 2003 B1
6547935 Scott Apr 2003 B2
6547951 Maekawa Apr 2003 B1
6551607 Minerath, III Apr 2003 B1
6576042 Kraus et al. Jun 2003 B2
6582611 Kerfoot Jun 2003 B1
6593436 Austin et al. Jul 2003 B2
6605252 Omasa Aug 2003 B2
6617588 Sato Sep 2003 B1
6620226 Hutton et al. Sep 2003 B2
6624100 Pike et al. Sep 2003 B1
6627265 Kutilek Sep 2003 B2
6655826 Leanos Dec 2003 B1
6659365 Gipson et al. Dec 2003 B2
6676003 Ehlert et al. Jan 2004 B2
6689730 Hortel et al. Feb 2004 B2
6739524 Taylor-McCune et al. May 2004 B2
6770600 Lamola Aug 2004 B1
6817541 Sands et al. Nov 2004 B2
6818128 Minter Nov 2004 B2
6837445 Tsai Jan 2005 B1
6841921 Stegelmann Jan 2005 B2
6858181 Aoyagi Feb 2005 B2
6878288 Scott Apr 2005 B2
6883724 Adiga et al. Apr 2005 B2
6890593 Tian May 2005 B2
6897628 Gunnerman May 2005 B2
6902650 Park et al. Jun 2005 B2
6911153 Minter Jun 2005 B2
6929750 Laurell et al. Aug 2005 B2
6935770 Schueler Aug 2005 B2
6936151 Lock Aug 2005 B1
7018546 Kurihara et al. Mar 2006 B2
7083322 Moore et al. Aug 2006 B2
7083764 Scott Aug 2006 B2
7090391 Taniguchi Aug 2006 B2
7108137 Lal et al. Sep 2006 B2
7150779 Meegan, Jr. Dec 2006 B2
7156201 Peshkovskiy et al. Jan 2007 B2
7293909 Taniguchi Nov 2007 B2
7322431 Ratcliff Jan 2008 B2
7338551 Kozyuk Mar 2008 B2
7404666 Tessien Jul 2008 B2
7414009 Tanaka et al. Aug 2008 B2
7419519 Li et al. Sep 2008 B2
7424883 McNichols et al. Sep 2008 B2
7465426 Kerherve et al. Dec 2008 B2
7504075 Marhasin Mar 2009 B2
7516664 Meier et al. Apr 2009 B2
7533830 Rose May 2009 B1
7582156 Tanaka et al. Sep 2009 B2
7673516 Janssen et al. Mar 2010 B2
7703698 Janssen et al. Apr 2010 B2
7712353 Janssen et al. May 2010 B2
7735751 Ehlert et al. Jun 2010 B2
7780743 Greaves et al. Aug 2010 B2
7785674 Janssen et al. Aug 2010 B2
20010040935 Case Nov 2001 A1
20020036173 Feke et al. Mar 2002 A1
20020164274 Haggett et al. Nov 2002 A1
20030042174 Austin Mar 2003 A1
20030047067 Kraus et al. Mar 2003 A1
20030048692 Cohen et al. Mar 2003 A1
20030051989 Austin Mar 2003 A1
20030061939 Hutton et al. Apr 2003 A1
20030066899 Gipson Apr 2003 A1
20030116014 Possanza et al. Jun 2003 A1
20030143110 Kritzler Jul 2003 A1
20030194692 Purdum Oct 2003 A1
20030234173 Minter Dec 2003 A1
20040022695 Simon Feb 2004 A1
20040065599 Lal et al. Apr 2004 A1
20040079580 Manna et al. Apr 2004 A1
20040120904 Lye et al. Jun 2004 A1
20040142041 MacDonald et al. Jul 2004 A1
20040187524 Sen et al. Sep 2004 A1
20040202728 Shanker et al. Oct 2004 A1
20050000914 Dahlberg et al. Jan 2005 A1
20050008560 Kataoka et al. Jan 2005 A1
20050017599 Puskas Jan 2005 A1
20050025797 Wang et al. Feb 2005 A1
20050042129 Kazem Feb 2005 A1
20050082234 Solenthaler Apr 2005 A1
20050084438 Do et al. Apr 2005 A1
20050084464 McGrath et al. Apr 2005 A1
20050085144 MacDonald et al. Apr 2005 A1
20050092931 Gadgil et al. May 2005 A1
20050094486 Taniguchi May 2005 A1
20050129161 Laberge Jun 2005 A1
20050207431 Beca et al. Sep 2005 A1
20050220665 Ding Oct 2005 A1
20050235740 Desie et al. Oct 2005 A1
20050260106 Marhasin Nov 2005 A1
20060000034 McGrath Jan 2006 A1
20060008442 MacDonald et al. Jan 2006 A1
20060120212 Taniguchi et al. Jun 2006 A1
20070114306 Kawakami et al. May 2007 A1
20070119785 Englehardt et al. May 2007 A1
20070131034 Ehlert et al. Jun 2007 A1
20070170277 Ehlert Jul 2007 A1
20080061000 Janssen Mar 2008 A1
20080062811 Janssen et al. Mar 2008 A1
20080063718 Janssen et al. Mar 2008 A1
20080067418 Ross Mar 2008 A1
20080069887 Baran et al. Mar 2008 A1
20080117711 Omasa May 2008 A1
20080155763 Janssen et al. Jul 2008 A1
20080156737 Janssen et al. Jul 2008 A1
20080159063 Janssen et al. Jul 2008 A1
20080192568 Hielscher et al. Aug 2008 A1
20080251375 Hielscher et al. Oct 2008 A1
20090014377 Janssen et al. Jan 2009 A1
20090147905 Janssen et al. Jun 2009 A1
20090155091 Ehlert et al. Jun 2009 A1
20090158936 Janssen et al. Jun 2009 A1
20090162258 Janssen et al. Jun 2009 A1
20090165654 Koenig et al. Jul 2009 A1
20090166177 Wenzel et al. Jul 2009 A1
20090168590 Koenig et al. Jul 2009 A1
20090168591 Wenzel et al. Jul 2009 A1
20090262597 Kieffer et al. Oct 2009 A1
20100150859 Do et al. Jun 2010 A1
20100206742 Janssen et al. Aug 2010 A1
20100296975 Peshkovsky et al. Nov 2010 A1
Foreign Referenced Citations (96)
Number Date Country
2175065 May 1995 CA
657067 Aug 1986 CH
1535249 Oct 2004 CN
1247628 Mar 2006 CN
101153138 Apr 2008 CN
2131878 Feb 1973 DE
262553 Dec 1988 DE
9017338 Mar 1991 DE
4444525 Jun 1996 DE
19854013 May 2000 DE
19913397 Sep 2000 DE
19938254 Feb 2001 DE
10015144 Oct 2001 DE
29825063 Jun 2004 DE
202005009923 Apr 2005 DE
102004040233 Mar 2006 DE
102005025118 Jan 2007 DE
102005034629 Jan 2007 DE
0269941 Jun 1988 EP
0292470 Nov 1988 EP
347891 Dec 1989 EP
0457187 Nov 1991 EP
0459967 Dec 1991 EP
0625482 Nov 1994 EP
0648531 Apr 1995 EP
0894612 Feb 1999 EP
1375432 Jan 2004 EP
1954388 Mar 2007 EP
0983968 Mar 2008 EP
2173669 Apr 2010 EP
2176173 Apr 2010 EP
2793811 Nov 2000 FR
2832703 May 2005 FR
1404575 Sep 1975 GB
56028221 Mar 1981 JP
57119853 Jul 1982 JP
58034051 Feb 1983 JP
62001413 Jan 1987 JP
62039839 Mar 1987 JP
63072364 Apr 1988 JP
63104664 May 1988 JP
1108081 Apr 1989 JP
2025602 Jan 1990 JP
02281185 Nov 1990 JP
03053195 Mar 1991 JP
3086258 Apr 1991 JP
03-157129 May 1991 JP
6228824 Aug 1994 JP
8304388 Nov 1996 JP
9286943 Nov 1997 JP
10060331 Mar 1998 JP
11133661 May 1999 JP
2000158364 Dec 1999 JP
2001017970 Jan 2001 JP
2001252588 Sep 2001 JP
2003103152 Apr 2003 JP
2004020176 Jan 2004 JP
2004256783 Sep 2004 JP
2005118688 May 2005 JP
20020073778 Sep 2002 KR
1020050013858 Feb 2005 KR
1020050113356 Dec 2005 KR
203582 Jan 1967 SU
9400757 Jan 1994 WO
9420833 Sep 1994 WO
9429873 Dec 1994 WO
9600318 Jan 1996 WO
9609112 Mar 1996 WO
9620017 Jul 1996 WO
9743026 Nov 1997 WO
9817373 Apr 1998 WO
9844058 Oct 1998 WO
9933520 Jul 1999 WO
0004978 Feb 2000 WO
0041794 Jul 2000 WO
2001039200 May 2001 WO
0222252 Mar 2002 WO
0250511 Jun 2002 WO
0280668 Oct 2002 WO
03012800 Feb 2003 WO
03102737 Dec 2003 WO
2004026452 Apr 2004 WO
2004064487 Aug 2004 WO
2005014489 Feb 2005 WO
2006037591 Apr 2006 WO
2006043970 Apr 2006 WO
2008047259 Apr 2006 WO
2006073645 Jul 2006 WO
2006074921 Jul 2006 WO
2006093804 Sep 2006 WO
2007011520 Jan 2007 WO
2005011804 May 2007 WO
2007060245 May 2007 WO
2007095871 Aug 2007 WO
2008029379 Mar 2008 WO
2008085806 Jul 2008 WO
Non-Patent Literature Citations (105)
Entry
Non-final office action regarding U.S. Appl. No. 11/530,311, dated Nov. 5, 2008.
International Search Report and Written Opinion regarding PCT/IB2008/052760, dated Feb. 17, 2009.
International Search Report and Written Opinion, PCT/IB2008/055051 (Feb. 20, 2009).
International Search Report and Written Opinion from PCT/IB2008/052766, dated Mar. 31, 2009.
International Search Report and Written Opinion regarding PCT/IB2008/055394, dated Sep. 28, 2009.
Blume, T. and Neis, U. “Improved wastewater disinfection by ultrasonic pre-treatment. ” Ultrasonics Sonochemistry, 2004, No. 11, pp. 333-336.
International Search Report and Written Opinion for PCT/IB2008/052764 mailed Apr. 2, 2009.
International Search Report and Written Opinion regarding PCT/IB2007/054898, dated May 15, 2008.
International Search Report and Written Opinion regarding PCT/IB2008/055396, dated Jul. 29, 2009.
International Search Report and Written Opinion issued Aug. 18, 2009 for PCT/IB2008/055520.
International Search Report and Written Opinion issued Aug. 18, 2009 for PCT/IB2008/055517.
International Search Report and Written Opinion issued Aug. 18, 2009 for PCT/IB2008/055518.
European Office Action regarding European Application No. 07805228.9, dated Oct. 9, 2009.
Non-final office action regarding U.S. Appl. No. 11/617,515, dated Mar. 27, 2009.
Non-final Office action regarding U.S. Appl. No. 11/965,435, dated Mar. 11, 2010.
English translation of Nagel WO 2006/074921 A1, accessed on the EPO website.
Non-final office action regarding U.S. Appl. No. 11/950,943, dated May 1, 2009.
J.D. Lawson, “Some Criteria for a Power Producing Thermonuclear Reactor”, Proc. Phys. Soc. B70, pp. 6-10 (1957).
L.A. Artsimovich, “Controlled Thermonuclear Reactions”, Gordon and Breach Science Publishers, New York, first English translation, 1964.
D.R.O. Morrison, “Cold Fusion Update No. 9”, Jan. 1994, from Newsgroups sci.physics.fusion, http://www.groups.google.com.
Brenner et al, Single-bubble sonoluminescence , Reviews of Modern Physics, vol. 74, Apr. 2002, pp. 425-484.
J. Lister, Plasma Physics and Controlled Fusion 48, pp. 715-716 (2006).
U.S. Department of Energy, “Report of the Review of Low Energy Nuclear Reactions”, Dec. 1, 2004 (USDOE).
Final Office Action Regarding U.S. Appl. No. 11/530,311, dated Jun. 23, 2009.
International Search Report and Written Opinion regarding PCT/IB2007/054892 dated May 15, 2008.
Non-final office action regarding U.S. Appl. No. 11/617.497, dated Jun. 26, 2009.
International Search Report and Written Opinion regarding PCT/IB2008/055395, dated Sep. 14, 2009.
International Search Report and Written Opinion regarding PCT/IB2008/055514, dated Aug. 25, 2009.
Non-final Office Action regarding U.S. Appl. No. 12/335,231, dated Oct. 15, 2009.
Kloeppel, James E. “Temperature inside collapsing bubble four times that of the sun,” News Bureau, University of Illinois at Urbana-Champaign.
Oct. 27, 2010 Letter regarding the Office action issued for Mexican Patent Application Serial No. MX/a/2009/002519 mailed Oct. 12, 2010.
Non-final Office action regarding U.S. Appl. No. 11/530,183, dated Apr. 19, 2010.
Takehi Moriguchi, et al. “Metal-modified silica adsorbents for removal of humic substances in water.” Journal of Colloid and Interface Science 283, 2005 300-310, See Abstract, pp. 301 and 304.
International Search Report and Written Opinion regarding PCT/IB2009/055090, dated Jul. 16, 2010.
International Search Report and Written Opinion regarding PCT/IB2009/055092, dated Jul. 16, 2010.
First Office Action for China Patent Application No. 200780033331.3, dated Nov. 14, 2011.
First Office Action for China Patent Application No. 200880121407.2, dated Aug. 24, 2011.
Non-final Office action issued in U.S. Appl. No. 11/963,139, dated Feb. 18, 2011.
Non-final Office action issued in U.S. Appl. No. 11/777,140, dated Feb. 23, 2011.
Non-final Office Action issued in U.S. Appl. No. 11/777,151 mailed Dec. 8, 2010.
Final Office Action issued in U.S. Appl. No. 11/966,418 mailed Jan. 12, 2011.
Non-final Office Action received in U.S. Appl. No. 11/966,458 mailed Sep. 28, 2010.
Non-final Office Action submitted in U.S. Appl. No. 11/530,183 dated Oct. 13, 2010.
Final Office action issued in U.S. Appl. No. 11/966,447 mailed Jan. 5, 2011.
Supplementary European Search Report issued in EP Application No. 08789242 mailed Dec. 17, 2010.
Compton R G et al., “Electrode Processes at the Surfaces of Sonotrodes,” Electrochimica ACTA, vol. 41, No. 2, pp. 315-320 (Feb. 1, 1996).
Extended European Search Report received in EP Patent Application No. 08789246.9 mailed Nov. 30, 2011.
Extended European Search Report received in EP Patent Application No. 08789248.5 dated Nov. 30, 2011.
Chinese First Office Action for Patent Application No. 200880123174.X dated Sep. 20, 2012; 8 pages.
Chinese First Office Action for Patent Application No. 200880123172.0 dated Oct. 10, 2012; 9 pages.
Extended European Search Report received in EP Patent Application No. 08868425 dated Feb. 14, 2012.
EP Office Action for Patent Application No. 08 789 246.9-2104 dated Sep. 4, 2012; 4 pages.
EP Office Action for Patent Application No. 08 789 248.5-2104 dated Sep. 4, 2012; 4 pages.
Final Office Action issued in U.S. Appl. No. 11/966,458, dated Mar. 17, 2011.
Final Office Action issued in U.S. Appl. No. 11/530,183, dated Mar. 22, 2011.
Non-Final Office Action issued in U.S. Appl. No. 11/966,472, dated Mar. 31, 2011.
Final Office Action issued in U.S. Appl. No. 12/335,231, dated Mar. 31, 2011.
Barbaglia et al., “Search of Fusion Reactions During the Cavitation of a Single Bubble in Deuterated Liquids,” Physica Scripta 72, pp. 75-78 (2005).
Final Office Action issued in U.S. Appl. No. 11/777,140, dated Dec. 1, 2010.
Non-Final Office Action issued in U.S. Appl. No. 11/530,210, dated Dec. 1, 2010.
Non-Final Office Action issued in U.S. Appl. No. 11/530,210, dated Jun. 28, 2010.
Sivakumar et al., “Preparation of nanosized TiO2 Supported on Activated Alumina by a Sonochemical Method: Observation of an Increased Photocatalytic Decolourisation Efficiency,” Research on Chemical Intermediated, 30 (7-8):785-792, 2004.
Kuo et al., “Nano-particles Dispersion Effect on Ni/AI2O3 Composite Coatings,” Materials Chemistry and Physics, 86:5-10 (2004).
Non-Final Office Action issued in U.S. Appl. No. 12/704,058, dated Dec. 9, 2010.
International Search Report and Written Opinion regarding PCT/IB2007/052947, dated Mar. 12, 2008.
International Search Report and Written Opinion regarding PCT/IB2007/052945, dated Feb. 1, 2008.
International Search Report and Written Opinion regarding PCT/IB2007/052988, dated Feb. 14, 2008.
Taleyarkhan, et al., “Evidence for Nuclear Emissions During Acoustic Cavitation,” Science, (Mar. 8, 2002), vol. 295, pp. 1868-1873.
Kloeppel, James E. “Temperature inside collapsing bubble four times that of the sun,” News Bureau, University of Illinois at Urbana-Champaign, Mar. 2, 2005.
Tal-Figiel B., The Formation of Stable W/O, O/W, W/O/W Cosmetic Emulsions in an Ultrasonic Field, viewed at http://www.atypon-link.com/ICHEME/doi/abs/10.1205/cherd06199 on Oct. 19, 2007.
“Controlled Thermonuclear Fusion” viewed at http://library.thinkquest.org/17940/texts/fusion—controlled/fusion—controlled.html on Oct. 23, 2007.
Flannigan, “Measurement of Pressure and Density Inside a Single Sonoluminescing Bubble,” Physical Review Letters (May 26, 2006), PRL 96.
Taleyarkhan, et al. “Additional Evidence of Nuclear Emissions During Acoustic Cavitation,” Physical Review E, (Mar. 2004). vol. 69.
“Thermonuclear Fusion Energy Source for Future Generations,” viewed at http://nature.com/news/2006/060109/full/060109-5.html on May 4, 2007.
Lahey, Taleyarkhan, and Nigmatulin, “Bubble Power, ”IEEE spectrum, May 2005, pp. 39-43.
International Search Report and Written Opinion regarding PCT/IB2007/053621, dated Feb. 14, 2008.
International Search Report and Written Opinion regarding PCT/IB2007/053623, dated Feb. 14, 2008.
International Search Report and Written Opinion regarding PCT/IB2007/053622, dated Feb. 14, 2008.
U.S. Appl. No. 11/777,140, filed Jul. 12, 2007.
U.S. Appl. No. 11/617,497, filed Dec. 28, 2006.
U.S. Appl. No. 11/617,515, filed Dec. 28, 2006.
U.S. Appl. No. 11/777,151, filed Jul. 12, 2007.
U.S. Appl. No. 11/950,943, filed Dec. 5, 2007.
U.S. Appl. No. 11/963,139, filed Dec. 21, 2007.
U.S. Appl. No. 11/966,458, filed Dec. 28, 2007.
U.S. Appl. No. 11/966,472, filed Dec. 28, 2007.
U.S. Appl. No. 11/966,418, filed Dec. 28, 2007.
U.S. Appl. No. 11/966,447, filed Dec. 28, 2007.
U.S. Appl. No. 11/777,145, filed Dec. 12, 2007.
U.S. Appl. No. 11/965,435, filed Dec. 27, 2007.
Peplow, Mark, “Desktop fusion is back on the table,” viewed at http//nature.com/news/2006/060109/full/060109-5.html on May 4, 2007.
Chinese First Office Action for 200880123165.0 dated Oct. 10, 2012; 9 pages.
Non-final Office action issued in related U.S. Appl. No. 11/777,140 on Aug. 9, 2010.
Non-Final Office action issued in related U.S. Appl. No. 11/966,418 on Aug. 2, 2010.
Non-Final Office action issued in related U.S. Appl. No. 11/966,447 on Aug. 2, 2010.
Sivakumar et al., “Preparation of nanosized TiO2 Supported on Activated Alumina by a Sonochemical Method: Observation of an Increased Photocatalytic Decolourisation Efficiency,” Research on Chemical Intermediated, 30 (7-8):785-792.
Final Office Action issued for U.S. Appl. No. 11/530,210, mailed Apr. 19, 2011.
First Office Action for China Patent Application No. 20088016947.3, dated Jun. 24, 2011.
First Office Action for Russian Patent Application No. 2009112526, dated Apr. 28, 2011.
Final Office Action issued for U.S. Appl. No. 11/530,210, mailed Jul. 1, 2011.
Non-Final Office Action issued for U.S. Appl. No. 12/335,231, mailed Jul. 13, 2011.
Non-Final Office Action issued for U.S. Appl. No. 12/335,176, mailed Jul. 13, 2011.
Non-Final Office Action issued for U.S. Appl. No. 11/963,139, mailed Jun. 15, 2011.
Non-final Office Action received in U.S. Appl. No. 12/438,317, mailed Sep. 24, 2012.
Extended European Search Report for EP Patent Application No. 08867871.9, mailed Sep. 27, 2012.
Related Publications (1)
Number Date Country
20090158936 A1 Jun 2009 US