The invention relates to a gas turbine and to a method for shutting off a gas turbine upon identification of a shaft break.
Gas turbines, such as aircraft engines for example, comprise at least one compressor and at least one turbine in addition to a combustion chamber. In gas turbines that comprise only a single compressor as well as a single turbine, the compressor and the turbine are connected with one another by a single rotating shaft. If the gas turbine has two compressors as well as two turbines, namely a low pressure compressor, a high pressure compressor, a high pressure turbine as well as a low pressure turbine, then the low pressure compressor as well as the low pressure turbine are connected with one another by a first shaft, and the high pressure compressor as well as the high pressure turbine are connected with one another by a second shaft. The two shafts then generally extend coaxially relative to one another, whereby one of the two shafts surrounds the other.
Overspeeding rotation conditions of a gas turbine as a result of a shaft break must be surely avoided. If a shaft break arises, then a compressor coupled with the broken shaft will no longer take-up any power from the corresponding turbine, whereby an overspeeding rotation of the turbine is caused. Because considerable damages can be caused on the gas turbine by the overspeeding rotation conditions, shaft breaks must be surely detected or identified, in order to shut off the gas turbine as a reaction thereto.
The DE 195 24 992 C1 discloses a method for regulating a shaft engine with a micro-control device with monitoring of the engine for shaft break and overspeeding rotation. According to the method disclosed therein, rotational speeds are measured with the aid of sensors, and the engine is tested with respect to shaft breakage and overspeeding rotation on the basis of these rotational speeds. If such an erroneous function is recognized, then the fuel delivery to the combustion chamber is interrupted and the gas turbine is deactivated.
In connection with the method disclosed in DE 195 24 992 C1, the determination of a difference rotational speed between a compressor-side end or section and a turbine-side end or section of the gas turbine shaft is necessary. Accordingly, rotational speeds must be detected at least two points, at a first compressor-side point and at a second turbine-side point. Especially in the hot turbine area, a rotational speed determination requires complicated provisions, whereby carrying out the method known from the prior art has been shown to be expensive and complicated. Furthermore, the method known from DE 195 24 992 C1 is only applicable on one or two-shafted gas turbines. On the other hand, this method known from the prior art is not practicable for multi-shafted gas turbines. This especially applies to more than two-shafted gas turbines, because a shaft surrounded by rotating shafts cannot easily without further efforts be referenced to a stationary reference system.
Beginning from this, the problem underlying the present invention is to provide a novel gas turbine and a novel method for shutting off a gas turbine upon identification of a shaft break thereof.
This problem is solved by a gas turbine according to the present invention, wherein at least one electrical current conductor is arranged on a shaft, whereby the electrical current conductor is a component of an electrical current supply for the fuel pump or a component of an electrical current supply for a fuel pump regulation, whereby the integrity of the or each current conductor is monitored in such a manner that upon a change of the integrity of the or each current conductor, the current supply of the fuel pump or the current supply of the fuel pump regulation is interrupted, in order to shut off the gas turbine in a self-acting or automatic manner.
A shaft break can be surely and easily detected in the inventive gas turbine. In comparison to the prior art, in the inventive gas turbine no separate arrangement is necessary in order to shut off the gas turbine upon a shaft break. Rather, in the invention, the gas turbine can be shut off directly from the integrity monitoring of the or each current conductor. This increases the reliability and reduces the costs.
The above problem has further been solved by the inventive method for shutting off a gas turbine upon identification of a shaft break thereof, wherein the method proceeds as set forth herein.
In the simplest example embodiment of the present invention, a gas turbine is proposed, which has a compressor, a turbine and a combustion chamber, whereby the compressor and the turbine are connected with one another via a shaft, and whereby fuel is introduced into the combustion chamber via a fuel pump as schematically shown in
If now a shaft break arises, then the integrity of the or each current conductor will also be changed, whereby upon a change of the integrity of the or each current conductor, the current supply of the fuel pump or the fuel pump regulation will be automatically interrupted, in order to shut off the gas turbine. If the current conductor is a component of the current supply of the fuel pump, then upon a shaft break and therewith a break of the current conductor, the current supply of the fuel pump will be directly interrupted. If the current conductor is a component of the current supply of the fuel pump regulation, then upon a shaft break and therewith a break of the current conductor, the fuel pump regulation is directly interrupted. In both cases, thereby the gas turbine can be shut off directly, that is to say without a further device or arrangement.
It is thus in the sense of the present invention to arrange, on at least one shaft that is to be monitored, at least one electrical current conductor that is a component of an electrical or current circuit. If the or each electrical current conductor is damaged upon occurrence of a shaft break, then the corresponding electrical or current circuit as interrupted and the fuel supply to the combustion chamber can be directly shut-off. From that there arises a simple as well as sure shutting-off of the gas turbine upon a shaft break.
As schematically shown in
The inventive principle is also applicable to multi-shaft gas turbines in a simple manner. For this purpose, at least one current conductor is allocated to each shaft.
With the aid of the present invention, a sure determination of a shaft break is possible. As a result of that, structural assemblies of the gas turbine, for example the rotors, can be embodied narrower and lighter, which leads to weight savings on the one hand and cost savings on the other hand. Only relatively few components are necessary for determining the shaft break. The inventive system is compactly constructed and detects a shaft break immediately and directly, without having to take further mechanisms into consideration. The invention can be embodied in a redundant manner with simple means. Simply the number of the current conductors being utilized needs to be multiplied. A shaft break is detectable in a simple and sure manner on multi-shaft gas turbines, and as a result the fuel supply to the combustion chamber can be directly shut off.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 047 892 | Oct 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE2005/001640 | 9/17/2005 | WO | 00 | 3/30/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/037286 | 4/13/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2815818 | Douglass | Dec 1957 | A |
2977758 | Haworth et al. | Apr 1961 | A |
3023575 | McCombs, Jr et al. | Mar 1962 | A |
3159166 | Luedemann et al. | Dec 1964 | A |
3696612 | Berman | Oct 1972 | A |
4406117 | Rowen et al. | Sep 1983 | A |
4718229 | Riley | Jan 1988 | A |
4870270 | Brennan | Sep 1989 | A |
5301499 | Kure-Jensen et al. | Apr 1994 | A |
5411364 | Aberg et al. | May 1995 | A |
5953901 | Sidiropoulos | Sep 1999 | A |
6494046 | Hayess | Dec 2002 | B1 |
7002172 | Rensch | Feb 2006 | B2 |
7043896 | Matthews | May 2006 | B2 |
7100354 | Opper | Sep 2006 | B2 |
20030091430 | Mulera et al. | May 2003 | A1 |
Number | Date | Country |
---|---|---|
2 062 047 | Jul 1972 | DE |
195 24 992 | Aug 1996 | DE |
197 27 296 | Jan 1999 | DE |
103 10 900 | Sep 2004 | DE |
1 239 349 | Jul 1971 | GB |
1 374 988 | Nov 1974 | GB |
2 303 225 | Feb 1997 | GB |
03-121219 | May 1991 | JP |
1 229 563 | May 1986 | SU |
Number | Date | Country | |
---|---|---|---|
20080178573 A1 | Jul 2008 | US |