A variety of different embodiments of gas-turbine combustion chambers are known from the state of the art, which are however all designed to the same basic principle, where a combustion chamber outer wall is provided which is produced from a formed sheet metal. Impingement cooling holes are made in this outer combustion chamber wall, usually by means of a boring process. Tiles are fastened to the outer combustion chamber wall and fixed by means of bolts and screws. An inner combustion chamber wall is designed in the same way. For suspension of the combustion chamber, flanges connected to a combustion chamber suspension are used. These parts are for example manufactured as separate forgings and welded to the outer or inner combustion chamber wall, respectively. A combustion chamber head, a head plate and a heat shield are also each manufactured as separate components, mostly as castings. The necessary cooling holes in the heat shield are also made by means of a boring process, like air supply holes in the head plate. The combustion chamber casing is connected to the heat shield and the combustion chamber head as well as to the head plate, partly by means of bolted connections and partly by welding.
The result is that the method of manufacture known from the state of the art requires a very large number of individual parts and involves very high expenditure for its production. In particular, the many components require many different production methods with many production steps. This furthermore results in the disadvantage that inaccuracies and dimensional divergences accumulate during production. The need to provide a plurality of cooling air holes in the combustion chamber wall and the tiles also results in high additional production expenditure. All this leads to very high costs for the manufacture of a gas-turbine combustion chamber too.
The object underlying the present invention is to provide a gas-turbine combustion chamber and a method for its manufacture, which, while being simply designed and easily applicable, reduce the required production effort, increase manufacturing precision of the combustion chamber and lead to a significant cost reduction.
In accordance with the invention, the problem is solved by a gas-turbine combustion chamber having a head plate and an outer and an inner combustion chamber wall, where the latter can be of the single-wall or double-wall design, i.e. with the tile function integrated into the combustion chamber wall and the tile being designed in one piece by means of a OLD method. Accordingly, it is provided, with regard to the method for manufacturing the combustion chamber, that the latter is made in one piece at least with the head plate and with the outer and the inner combustion chamber wall by means of the DLD (direct laser deposition) method.
In a particularly favourable embodiment of the invention, it is provided that the combustion chamber has a U-shaped cross-section and is either manufactured in one piece by means of the DLD method or is assembled from individual segments of U-shaped cross-section which are welded to one another and are each manufactured by means of the DLD method. These segments expediently include at least one combustion chamber sector, but can also extend over several sectors, where the recurrent division on the basis of the fuel nozzles is defined as the combustion chamber sector.
With the OLD method to be used in accordance with the invention, a powdery basic material usually consisting of metallic components is melted on, layer by layer, by means of a laser or an electron beam, so that a three-dimensional workpiece is produced which is of high precision and requires only minor reworking or none at all. Using the DLD method, it is in particular possible to produce highly complex geometries with recesses, cavities and/or undercuts in a way that would not be possible with conventional production, or if so only to a very limited extent.
In a particularly favourable development of the invention, it is provided that at least one combustion chamber flange and/or one combustion chamber suspension are/is manufactured in one piece with the combustion chamber by means of the DLD method. It can be favourable here to manufacture the combustion chamber flange and/or the combustion chamber suspension with an allowance, and to finish-machine it afterwards to suit the installation situation.
With a design of the gas-turbine combustion chamber in accordance with the invention using individual segments of a U-shaped cross-section, it can be advantageous to provide at the joining areas of the segments web-like areas which provide an additional material volume for the subsequent welding operation. It is thus not required during joining of the individual segments to supply additional material, thus leading to a substantial simplification of the welding method.
The joining points can here be in one plane, which is advantageous from the viewpoint of production, but it is also conceivable to match the separation points of the sectors to the traditional design rules for tiles, which make no provision for separation points due to admixing holes. The resultant joining lines represent a line which is more or less curved in the circumferential direction and can be in the opposing direction on the top and bottom sides.
In accordance with the invention, cooling air holes, holes for fastening points, admixing holes, holes for igniter plugs and/or holes for sensors or the like are also manufactured by means of the DLD method. Further additional machining steps can therefore be dispensed with entirely, it is furthermore possible to create the individual holes or recesses with any required cross-sections and any required orientation. This permits design measures that with conventional production methods would not be feasible, or if so only to a limited extent.
In a favourable development of the gas-turbine combustion chamber in accordance with the invention, it is possible either to design a combustion chamber head as a full ring and connect it to the gas-turbine combustion chamber, or to manufacture the combustion chamber head in segmented form. The head plate manufactured by means of the DLD method is preferably provided with positive-fitting positioning means (contact surfaces, spring surfaces and the like) to assure exact positioning of the combustion chamber head.
In accordance with the invention, it is thus furthermore provided that the segments or partial segments include not only either the upper or the lower combustion chamber wall, but also at least a part of the combustion chamber head and/or of the head plate and/or of the heat shield. Widely differing design variants of the combustion chamber in accordance with the invention are therefore possible, which can be adapted to the respective combustion chamber geometry in an optimum way with regard to the additive manufacturing method. A possibility for fitting of the burner seal can be created in suitable manner by providing recesses through which the burner seal can be inserted during the fitting operation.
In an alternative embodiment of the invention, it is possible to divide the segments or partial segments, relative to a combustion chamber center axis, or to provide, as a dividing plane, a plane which is arranged above or below the combustion chamber center axis. In this connection, it must be pointed out that the gas-turbine combustion chamber in accordance with the invention is designed as an annular combustion chamber which is inclined relative to the machine axis. The combustion chamber therefore has a ring shape, with the respective combustion chamber center axis being inclined at an angle to the engine center axis of the gas turbine, The individual combustion chamber center axes of the respective sectional views thus form a cone-shaped envelope relative to the ring shape of the combustion chamber. This means that the individual combustion chamber center axes are arranged on a cone rotationally symmetrical about the machine axis.
The expression “upper and lower parts of the combustion chamber” relates to sectional views selected in the exemplary embodiments, which are aligned in accordance with their installation position and relate to the engine center axis.
The present invention is described in the following in light of the accompanying drawing, showing exemplary embodiments. In the drawing,
The gas-turbine engine 110 in accordance with
The intermediate-pressure compressor 113 and the high-pressure compressor 114 each include several stages, of which each has an arrangement extending in the circumferential direction of fixed and stationary guide vanes 120, generally referred to as stator vanes and projecting radially inwards from the engine casing 121 in an annular flow duct through the compressors 113, 114. The compressors furthermore have an arrangement of compressor rotor blades 122 which project radially outwards from a rotatable drum or disk 125 linked to hubs 126 of the high-pressure turbine 116 or the intermediate-pressure turbine 117, respectively.
The turbine sections 116, 117, 118 have similar stages, including an arrangement of fixed stator vanes 123 projecting radially inwards from the casing 121 into the annular flow duct through the turbines 116, 117, 118, and a subsequent arrangement of turbine blades 124 projecting outwards from a rotatable hub 126. The compressor drum or compressor disk 125 and the blades 122 arranged thereon, as well as the turbine rotor hub 126 and the turbine rotor blades 124 arranged thereon rotate about the engine center axis 101 during operation.
The combustion chamber head 3, the head plate 13 and the heat shield 2 are, as already mentioned, manufactured as separate components, usually by means of a casting process. In subsequent process steps, it is necessary to provide cooling holes. in particular in the heat shield. Air passage holes in the head plate 13 are also usually bored.
For thermal insulation of the and the inner combustion chamber wall 30, 31, tiles 29 are used which are manufactured individually and provided with effusion holes. The effusion holes are usually bored, while the tiles 29 are manufactured as castings. The tiles 29 are bolted by means of bolts 27 and nuts 28 to the outer and the inner combustion chamber wall 30, 31 or fastened in another way. The result is thus that a very complex structure using a plurality of individually manufactured structural elements is obtained. A considerable effort involving high costs is required for both manufacture and final assembly of the combustion chamber, In addition, dimensional inaccuracies of the individual components accumulate. requiring special additional measures to achieve precise dimensioning of the combustion chamber.
It is also possible in accordance with the invention to invert the structure shown in
Alternatively to the design variants described, it is also possible to have the separation not on the combustion chamber center line 42, but at any other point.
Overall, the combustion chamber in accordance with the invention is manufactured such that with a segmented design the segments are welded to form a complete ring, for example by means of laser welding. The combustion chamber suspension 25 and the combustion chamber flange 26 (see
Using the additive production method, the cooling holes can have any hole and duct shapes and sizes, for example round, elliptical, rhomboidal or duct-like, where the alignment with the wall can be designed perpendicular or at any inclination. It is also possible to achieve helical or other geometries. As a result an effective air supply. in particular for cooling, can be assured. The position and the number of the admixing holes 5 can also be selected as required, for example in several rows, offset relative to one another, with differing sizes or in any other embodiment.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 204 468.5 | Mar 2014 | DE | national |