The present disclosure relates generally to combustors for use in gas turbines and more specifically to pre mix burner configurations and arrangements suitable for these combustors.
An industrial gas turbine typically includes a compressor and a turbine conventionally arranged on a common shaft. Between the compressor and turbine is a combustion chamber, in which typically a plurality of burners are located. The burners generate hot combustion gases from the combustion of gaseous and/or liquid fuel. A type of burner that may be utilized in a combustor includes a lance type extractable burner. The extraction of such burners typically requires an opening in the outer cases of comparable size to the diameter of the burner. The larger the diameter of the burner, the large the comparable opening in the outer casing and the higher the manufacturing cost.
The combustion air necessary for the combustion of the fuel is sucked in by the compressor via an air feed, compressed and subsequently fed, via a compressed-air duct, into a plenum chamber, from where it passes through corresponding orifices into the burner. The hot combustion gases from the combustion chamber pass, via a hot-gas duct, into the turbine where work is performed in one or more stages. Due to the temperature of the combustion gases and the need to ensure that combustion gas do not leak out, all sealed joins within the combustor need to be purged, typically with purge air. However, the addition of purge air has a negative impact on gas turbine efficiency. It is therefore desirable to provide designs that minimise the need for seals.
A problem that may occur in the combustor of such industrial gas turbines is pressure oscillations. Pressure oscillations can reduce part life and may result in the de-rating of the turbine power output. US application number US2004/001020 A1 discloses a control unit that controls at least one of a fuel flow rate and an airflow rate of air to overcome oscillations. There is, however, a need to provide alternative methods of overcoming oscillations that do not affect the turbine capacity or performance.
The disclosure is intended to provide a combustor burner that facilities a more cost effective extraction of burners and enables tuning to overcome pressure oscillations.
It attempts to address these problems by means of the subject matter of the independent claim. Advantageous embodiments are given in the dependent claims.
The disclosure is based on the general idea of providing a burner that is moveably mounted within a sleeve that is either fixed to or otherwise forms part of the front panel of the combustor liner.
One aspect of the disclosure is to provide a combustor in which the burner is movable in an axial direction inside a sleeve and relative to the sleeve during operation of the combustor.
An aspect provides a combustor for a gas turbine comprising a front panel to which a second end of an elongated sleeve is seallessly mounted. The combustor further comprises a burner mounted in the sleeve. The sealless mounting reduces the need for post combustion air purging within the combustor, which would otherwise be required to prevent combustion gas leakage through the seal and maintain seal temperature. The burner can be a mixing region of the combustor where fuel is introduced and mixed with the combustion gases. Downstream of the front panel the combustor can have a combustion region. The front panel is generally orientated perpendicular to the main flow direction. At the front panel the flow area increases. Typically this increase in flow area is in a stepwise manner.
In another aspect, the burner is configured to be a slidably extractable burner and the mounting in the sleeve enables axial insertion and mounting within the sleeve. As the sleeve is not part of the burner, the burner diameter is minimised. This makes it possible to simplify the design of the outer casing.
In another aspect, the burner comprises a body and a conically expanding swirl shell extending from the body at a first narrow end to a second wider distal end. In this aspect, the sleeve shrouds the swirl shell so as to ensure an even velocity distribution along the shell. This results in a lower pressure drop across the burner. The efficiency of the air distribution is further enhanced by the sleeve, at the first upstream end, having a conical mouth for directing combustion gases in the axial direction.
In another aspect, the outlet of the sleeve, at the second downstream end, has a bell shaped outlet for providing flame stability.
In another aspect, the burner comprises a burner ring having a first upstream end, a second distal downstream end, an inner surface and an outer surface wherein the burner ring is fixingly mounted to the distal second end of the swirl shell on the inner surface of the burner ring at a point between the first and second burner ring ends so as to a least partially shroud the swirl shell. The burner ring improves the stability of the mounting of the burner within the sleeve by increasing the axial contact surface between the sleeve and the burner.
In another aspect, a seal for sealing a cavity formed between the burner ring and the sleeve is located on either the burner ring or the sleeve, wherein the seal defines a mounting point between the burner ring and the sleeve. The seal minimises the potential for gas leakage behind the burner.
In an aspect, the seal is a labyrinth and piston ring seal and the seal is located on the outer surface of the burner ring.
In an aspect, the sleeve comprises a plurality of purge holes through the sleeve therethrough that circumscribe the sleeve. The purge holes enable the purging of the cavity between the burner ring and the sleeve. Preferably, the purge holes are located such that when the burner ring is mounted in the sleeve, the purge holes are capable of directing purge gas to an annular gap, formed between the outer surface of the burner ring and the sleeve, and extending from downstream end of the seal.
In an aspect, the seal is located on the outer surface of the burner ring towards the first upstream end of the burner ring. The location of the seal towards the upstream end of the burner ring makes it possible to extend the axial variation of the mounting of the burner within the sleeve while maintaining the purge holes at the downstream end of the seal.
In an aspect, the combustor comprises a plurality of circumferentially fixed sleeves and burners of other aspects of the disclosure, wherein the axial alignment of at least two of the burners is staggered. This is enabled by the slidable characteristic of the burner within the sleeve. In a system with a plurality of burners, the ability to axially stagger the relative location of the burners provides an effective means to tune out pressure oscillations without there being a further need to adjust fuel or air flows or other operating conditions.
It is a further object of the invention to overcome or at least ameliorate the disadvantages and shortcomings of the prior art or else provide a useful alternative.
Other aspects and advantages of the present disclosure will become apparent from the following description, taken in connection with the accompanying drawings, by way of illustrated exemplary embodiments of the present disclosure.
By way of example, embodiments of the present disclosure are described more fully hereinafter with reference to the accompanying drawings, in which:
Exemplary embodiments of the present disclosure are now described with references to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth to provide a thorough understanding of the disclosure. However, the present disclosure may be practiced without these specific details, and is not limited to the exemplary embodiments disclosed herein.
Throughout this specification reference is made to the axial direction. Axial direction refers to the axis of the burner 30. In addition, upstream and downstream is made in reference to the normal fuel/air flow direction when the burner 30 is in service.
In an exemplary embodiment shown in
In an exemplary embodiment shown in
The burner 30 of an exemplary embodiment, as shown in
As shown in
In an exemplary embodiment as shown in
The burner 30 is slidably mounted in the sleeve 20 so as to enable axial adjustment of the burner 30. This slidable mounting further enables the burner 30 to be extracted from the combustor 10 independent of the sleeve 20. This is achieved by the relative shape of the sleeve 20 and the second end of the swirl shell 33, as shown in
In an exemplary embodiment shown in
In an exemplary embodiment shown in
In an exemplary embodiment shown in
In an exemplary embodiment shown in
In an exemplary embodiment shown in
In a further exemplary embodiment shown in
In an exemplary embodiment shown in
In an exemplary embodiment shown in
Although the disclosure has been herein shown and described in what is conceived to be the most practical exemplary embodiments, the present disclosure can be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive. The scope of the disclosure is indicated by the appended claims rather that the foregoing description and all changes that come within the meaning and range and equivalences thereof are intended to be embraced therein.
Number | Date | Country | Kind |
---|---|---|---|
12162112.2 | Mar 2012 | EP | regional |
This application claims priority to PCT/EP2013/056188 filed Mar. 25, 2013, which claims priority to European application 12162112.2 filed Mar. 29, 2012, both of which are hereby incorporated in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2013/056188 | Mar 2013 | US |
Child | 14494984 | US |