1. Field of the Invention
The invention relates to a gas turbine combustor.
2. Description of the Related Art
Conventional gas turbine utilizes a two-stage combustor which includes a pilot nozzle for forming a diffusion flame, as a pilot flame, along the axis of the combustor, and a plurality of main nozzles for discharging a fuel-air mixture to form premixed flames as the main combustion around the diffusion flame.
In the conventional gas turbine combustor, the premixed flames complete the combustion process in a short length in the axial direction of the combustor which may result in short flames or a rapid combustion adjacent a wall. When the combustion process is completed within a small volume, the volumetric density of the energy released by the combustion or the combustion intensity in the combustor becomes high so that a combustion-driven oscillation can easily be generated within a plane perpendicular to the axis or in the peripheral direction. The combustion-driven oscillation is self-excited oscillation generated by the conversion of a portion of the thermal energy to the oscillation energy. The larger the combustion intensity in a section of a combustor, the larger the exciting force of the combustion-driven oscillation to promote the generation of the combustion-driven oscillation.
The invention is directed to solve the prior art problems, and to provide a gas turbine combustor which is improved to reduce a combustion-driven oscillation.
According to the invention, a gas turbine combustor comprises a side wall for defining a combustion volume, having upstream and downstream ends, a pilot nozzle, disposed adjacent the upstream end of the side wall, for discharging a pilot fuel to form a diffusion flame in the combustion volume, and a plurality of main nozzles, provided around the pilot nozzles, for discharging a fuel-air mixture to form premixed flames in the combustion volume. Film air is supplied into the combustion volume downstream of the main nozzles along the inner surface of the side wall to reduce the fuel-air ratio in a region adjacent the inner surface of the side wall and to restrain a combustion-driven oscillation in the combustion volume.
According to another feature of the invention, a gas turbine combustor comprises a side wall for defining a combustion volume the side wall having upstream and downstream ends, a pilot nozzle, disposed adjacent the upstream end of the side wall, for discharging a pilot fuel to form diffusion flame in the combustion volume, and a plurality of main nozzles, provided around the pilot nozzles, for discharging a fuel-air mixture to form premixed flames in the combustion volume. The side wall includes a plurality of oscillation damping orifices which are defined in a region downstream of the main nozzles and extend radially through the side wall.
These and other objects and advantages and further description will now be discussed in connection with the drawings in which:
With reference to the drawings, a preferred embodiment of the present invention will be described below.
A gas turbine 100 according to the embodiment includes a compressor (not shown), an expander (not shown) connected to the compressor by a shaft, a casing 102 and 104 for enclosing the compressor and the expander, and a combustor 10 fixed to the casing 102 and 104. The air compressed by the compressor is supplied to the combustor 10 through a compressed air chamber 106 defined by the casing 102 and 104.
The combustor 10 has cylindrical a combustor tail tube 12 and an inner tube 30. A pilot nozzle 14 is provided at the center of the inner tube 30 around which a plurality of main nozzles 16 are disposed. A fuel, for example natural gas, is supplied as a pilot fuel to the pilot nozzle 14 through a pilot fuel supply conduit 26. The pilot nozzle 14 discharges the pilot fuel into the combustor tail tube 12 to form a diffusion flame. A fuel, for example natural gas, is supplied as a main fuel through a main fuel supply conduit 28 so that the main fuel is mixed with air, supplied from the compressed air chamber 106, in a volume upstream of the main nozzles 16. The main nozzles 16 discharge the fuel-air mixture into the inner tube 12 to form premixed flames.
With reference to in particular
In this embodiment, the combustor tail tube 12 defines a plurality of axially extending steam passages 12a (shown in
An acoustic liner 24 is preferably attached to the combustor tail tube 12 so that the acoustic liner 24 encloses the outer surface adjacent the rear end of the combustor tail tube 12 to define an acoustic buffer chamber 25 between the acoustic liner 24 and the outer surface of the combustor tail tube 12. A plurality of orifices 12b, which radially extend through the wall of the combustor tail tube 12 to fluidly communicate the internal volume of the combustor tail tube 12 with the acoustic buffer chamber 25, are defined as oscillation damping orifices. With reference to in particular
The preferred embodiment of the present invention has been described. The invention, however, is not limited to the embodiment and can be varied and modified within the scope of the invention.
For example, a plurality of orifices 24a can be provided as air cooling orifices in the acoustic liner 24 for introducing the air from the compressed air chamber 106 into the acoustic buffer chamber 25. The provision of the air cooling orifices 24a allows the wall portions between the adjoining orifices 12b of the combustor tail tube 12 to be cooled by the air through the air cooling orifices 24a. The air cooling orifices 24a are preferably disposed in lines aligned over the corresponding lines of the orifices 12b and axially offset relative to the orifices 12b so that the air cooling orifices 24a are axially positioned intermediately between the adjoining orifices 12b. The above-described disposition of the air cooling orifices 24a allows the air to flow into the acoustic buffer 25 through the air cooling orifices 24a as impingements jet relative to the wall of the combustor tail tube 12 and to effectively cool the wall portions between the adjoining orifices 12b of the combustor tail tube 12.
Further, the acoustic liner 24 is not required to comprise an integral single body enclosing the proximal end portion of the combustor tail tube 12. The acoustic liner 24 can comprise a plurality of liner segments 124 disposed around the combustor tail tube 12, as shown in FIG. 5. The configuration of the acoustic liner 24 composed of the liner segments 124 allows the thermal stress generated in the acoustic liner 24 to be reduce by the temperature difference between the acoustic liner 24 and the combustor tail tube 12.
Further, a bellows portion, for reducing thermal stress, may be provided in the liner segments. With reference to
In another embodiment shown in
In another embodiment shown in
Further, in an embodiment shown in
It will also be understood by those skilled in the art that the forgoing description describes preferred embodiments of the disclosed device and that various changes and modifications may be made without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2001-121498 | Apr 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
2654219 | Tadeusz | Oct 1953 | A |
4292801 | Wilkes et al. | Oct 1981 | A |
4984429 | Waslo et al. | Jan 1991 | A |
5373695 | Aigner et al. | Dec 1994 | A |
5685157 | Pandalai et al. | Nov 1997 | A |
6082111 | Stokes | Jul 2000 | A |
6530221 | Sattinger et al. | Mar 2003 | B1 |
6640544 | Suenaga et al. | Nov 2003 | B2 |
Number | Date | Country |
---|---|---|
196 12 987 | Sep 1996 | DE |
0 892 216 | Jan 1999 | EP |
0 900 982 | Mar 1999 | EP |
1 213 539 | Jun 2002 | EP |
1 221 574 | Jul 2002 | EP |
2 309 296 | Jul 1997 | GB |
2001-254634 | Sep 2001 | JP |
WO 0225174 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040060295 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10124413 | Apr 2002 | US |
Child | 10671472 | US |