The invention relates to a gas turbine composite workpiece comprising least two components joined by at least one weld seam. Specifically, the invention relates to a composite exhaust casing of a gas turbine engine. Moreover, the invention relates to a method of manufacturing a composite workpiece comprising at least two components joined by at least one weld seam.
Gas turbine engines are known to take in air at a relatively low speed, heat it up by combustion and expel it at a much higher speed. Such gas turbine engines comprise stators with an outer and an inner ring, the outer ring connected to the inner ring by wall elements (struts) arranged between the rings. Gas turbine parts may be made by casting in one single piece. Alternatively, the parts may be made up of multiple pieces joined together by welding. As an example, US 2006/0000077 A1 discloses a stator part for a gas engine which is made up of several sectors which are joined together in the direction of its circumference. The sectors are cast as separate pieces, positioned adjacent to each other and welded one to another.
The individual sectors will typically comprise areas of different wall thickness. As the sectors are joined together by butt welding, weld seams joining areas of different wall thickness may meet or intersect. As gas turbine stator parts are subject to large thermal wear and large temperature gradients during operation, thermal stress may occur, especially in areas exhibiting weld seam crossings. This stress may cause deformations, material wear and eventually failure of the gas turbine parts.
It is desirable to reduce thermal stress in a gas turbine composite workpiece made up of several components joined by weld seams. More specifically, it is desirable to provide a composite exhaust casing for a gas turbine which is robust with respect to thermal wear. Furthermore, it is desirable to provide a method of manufacturing a gas turbine composite workpiece with reduced thermal stress.
According to an aspect of the invention, the gas turbine composite workpiece is made up of two or more components joined by weld seams and contains apertures which are located on the weld seams joining the components of the workpiece; the apertures are positioned in such a way that they interrupt the weld seams. The apertures relieve the thermal stresses building up in the area of the weld seams whenever the workpiece is subjected to large thermal gradients, thus reducing thermal stress within the gas turbine composite workpiece.
The components are particularly components forming at least a part of an annular structure in a gas turbine which annular structure is subject to high thermal load during operation. Particularly, whereas in the art of jet engines a 360 degree casting is used e.g. for the hub due to the complexity of this part, the present invention can provide a “fabricated hub” with components welded together which allows for a better manufacturability of the workpiece.
In order to form a closed workpiece surface and prevent gas exchange between the workpiece's sides during operation, the workpiece can be equipped with means for preventing gas flow through the aperture. Preferably, the means for preventing gas flow through the aperture can be formed by a bracket which blocks said aperture at least partly. The bracket may comprise two overlapping blades, each blade being attached to one of the adjacent components, for example by screws.
The gas turbine composite workpiece may comprise weld seams which intersect. These weld seam intersections constitute areas in which thermal stresses are likely to accumulate, thus causing increased local thermal wear during operation. Therefore, it is advantageous to place apertures at these weld seam intersections. In particular, each of the components of the gas turbine composite workpiece may comprise areas of different wall thickness, and the weld seams may be distributed over areas of varying wall thickness. In this case, since weld seams in these regions are especially subject to thermal stress and strain during operation of the workpiece, the apertures are preferably located in regions in which large variations of wall thickness occur.
In a preferred embodiment of the invention, the components of the workpiece are joined by butt welding. The butt weld seams joining thin-walled areas are preferably formed by laser welding, whereas the butt weld seams joining the thick-walled areas are preferably formed by electron beam welding.
The gas turbine composite workpiece may have a disk-like or ring-like shape. In that case, the components are sectors of the disk or the ring and are joined in the circumferential and/or radial direction of the disk or the ring. When used on a workDiece that forms part of a gas turbine, for example a turbine exhaust casing, an aspect of the invention thus enables an assembly with optimized weld seams experiencing reduced thermal stress during operation.
According to a second aspect of the invention, a method for manufacturing a gas turbine composite workpiece comprising least two components joined by at least one weld seam is provided. The method comprises the steps of (1) positioning the components next to each other, (2) joining the components by a weld seam and (3) machining the workpiece in an area comprising at least one end portion of the weld seam, thus at least partly removing the end portion of the weld seam. Preferably, the workpiece is machined in such a way as to generate or modify an aperture located at the end portion of the weld seam. The end portion can be a starting point or an end point of the weld seam.
In a preferred embodiment, the components comprise recesses located adjacent to the end of a weld seam; after welding, the area of the recesses is machined in such a way that the end portion of the weld seam is removed. In a further preferred embodiment, the components comprise protrusions which, after welding, accommodate the end portion of the weld seam; after welding, the area of the protrusion is machined in such a way that the end portion of the weld seam is removed.
After welding the components together and machining the weld seams, the composite can be welded to a support structure. The components may form a fabricated hub of the gas turbine composite workpiece.
The present invention together with the above-mentioned and other objects and advantages may best be understood from the following detailed description of the embodiments, but not restricted to the embodiments, wherein is shown schematically:
a-1c a perspective front view of a gas turbine composite workpiece corresponding to a preferred embodiment of the invention (
a-2b a perspective front view of a sector of the workpiece of
a-3d a schematic view a region III of the workpiece of
a-4d detailed views of the region depicted in
In the drawings, equal or similar elements are referred to by equal reference numerals. The drawings are merely schematic representations, not intended to portray specific parameters of the invention. Moreover, the drawings are intended to depict only typical embodiments of aspects of the invention and therefore should not be considered as limiting the scope of the invention.
a shows a front view of a gas turbine composite workpiece 10 according to a preferred embodiment of the invention. The gas turbine composite workpiece 10 forms part of a turbine engine, particularly a rear frame for a jet engine. Typically, rear frames have different names depending on the specific manufacturer, such as e.g. “tail bearing house”, “turbine rear frame”, “turbine exhaust case” and the like. The main purpose of such a rear frame component e.g. in a plane is to act as a support for a shaft connecting the inlet fan to the low pressure turbine and to provide a rear mount of the engine to the plane usually by mount links connected to the pylon under the wing of the plane. The bearing is located at the centre bore with axis 30. The “ears” (not referred to with reference numerals) projecting radially away from the outside of the outer ring 120 are so called rear mount lugs used for engine mount attachment.
The structure 140 surrounding the main gas path is known as “ring-strut-ring” structure. The radial spokes 130 are usually called “vanes” if their purpose is to deflect air and “struts” if their purpose is to carry structural loads. The outer ring 120 is called “shroud” whereas the inner ring 110 is called “hub”. The “ring-strut-ring” structure 140 is connected to the bearings using a support structure 100 usually by a “support cone” represented by components 12. On multiple shaft engines, the centre bore can be used for multiple bearings.
The “ring-strut-ring” structure 140 is connected to the support structure 100 by a circumferential weld between these two parts.
In the art of jet engines a 360 degree casting is used for the hub 110 due to the complexity of this part. In contradistinction to this, the invention is particularly related to a “fabricated hub” with a multitude of components 12 welded together. In this example, thirteen components 12 are welded together and form the hub 110. The number of pieces is arbitrary but may be governed by the number of spokes 130 in the specific application. The components 12 forming the hub 110 are welded to form a 360 degree part. The weld seams are indicated by solid lines 40.
The support structure 100 can be made of one piece or of a multitude of pieces, for instance of as many pieces as the components 12. If a one-piece support structure 100 is used, the weld 40 (
Specifically, the gas turbine composite workpiece 10 can be an intake part, an intermediate housing, a turbine exhaust housing (i.e. a terminating housing part) etc. for a gas turbine. The workpiece 10 may be used as a support for bearings, thus transferring loads and providing ducts for gases.
The gas turbine composite workpiece 10 exhibits radial symmetry about the axis 30 and is made up of several (in the present case thirteen) identical components 12, as indicated by solid and dotted lines in
The components 12 are hub portions forming sectors 14, 14a in the hub ring 110 of the radially symmetrical workpiece 10. In a preferred embodiment of the invention, the sectors 14 are manufactured by casting, e.g. by investment casting.
Each sector 14 comprises a core area 16 of large wall thickness 18 (e.g. 6-7 mm) extending in radial direction of the workpiece 10 as well as a rim area 20 of smaller wall thickness 22 (e.g. 2-3 mm) extending out from the core area 16 in an axial direction of the workpiece 10.
a shows a schematic view of two components 12 (sectors 14, 14a) placed next to each other in such a way that the edges 24, 24a that are to be joined are positioned side by side. Note that the components 12 exhibit recesses 44 located in a region 32 in which the edges 24, 24a terminate. These recesses 44 enable the welding tool used for joining the components 12 to better access the cramped space in which the component's core region 16 meets the rim region 20. As the components 12 are welded together, a weld seam 40 following edges 24, 24a is generated (see
In the schematic of
Analogously to the welding of the core region 16 of the sectors 14, 14a, the rims 20, 20a are joined by weld seam 42, as is schematically depicted in
As can be seen from
In order to minimize an exchange of gas between the high-temperature and the low-temperature sides of the workpiece 10 during operation, the apertures 46 are provided with means 70 for preventing undesired gas flow through these apertures 46. In the preferred embodiment shown in
Besides using a bracket 60 for preventing undesired gas flow through the apertures 46, the apertures could also be blocked by different means, such as by applying a seal, a cover or an alternate suitably shaped blocking member.
In a preferred embodiment, the gas turbine composite workpiece 10 is manufactured in the following way: In a first step, the sectors 14, 14a forming the workpiece 10 are placed adjacent to each other. Subsequently, adjacent rim areas 20, 20a of neighbouring sectors 14, 14a are joined by laser or TIG welding, the weld seams 42 following the edges 26, 26a extending in axial direction 30. In this way, by joining the thirteen sectors 314, 14a of
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2008/000733 | 12/18/2008 | WO | 00 | 6/20/2011 |