The invention relates to a method of blowing air in a compression stage diffuser of a gas turbine, in particular in compressors of the centrifugal or mixed type. A mixed compressor may be understood to be a compressor structured at the impeller outlet such that the air stream forms an angle of between 0 and 90° relative to a radial direction. The invention also relates to a compressor diffuser suitable for implementing such a process.
The field of the invention is that of operation of compressors and improvement of their performance, in particular of the surge margin. The performance is in particular sensitive to the air flow coming from the impeller of the compressor. The diffuser has the function of adjusting this flow in order to optimise the transformation of the dynamic air pressure into static pressure.
In general, a diffuser is composed of inclined blades in a space formed between two end plates. The deviation produced by the blades can cause air flow separations on the lower or upper surface of the blades. Such separations can lead to detachment of the air streams and, if the phenomenon increases, to surging.
It is therefore necessary to maintain a sufficient surge margin in order to avoid the very detrimental consequences of surging, which may even lead to the destruction of components of the compressor.
Hitherto, in order to attempt to stabilise the air flow and to avoid surging, a portion of the air could be taken in the air passage upstream of the diffuser blades by diverting some of the air at the outlet of the impeller and by re-injecting it in the region of the end plates of the diffuser, for example according to the method described in the patent U.S. Pat. No. 6,699,008. But this system is not optimal, since if the reintroduction of air into the diffuser can improve the stability of the compressor, diverting the air at the outlet of the impeller can cause new problems of stability. Moreover, to effect a reintroduction without generating additional losses is difficult, because the air at the outlet of the impeller is at a lower static pressure level than that of the re-injection site.
It is also known to produce cavities in the upper surfaces of blades in order to use it as a cooling fluid as described in the document U.S. Pat. No. 6,210,104. The patent document FR 2937385 in the name of the applicant describes an improvement to this solution by a progressive increase of the cross-section of the cavities between the intake orifice and the outlet orifice. Then the intake of the fluid is homogenised on the blades. However, it may prove necessary to discharge outside this collected air to the exterior, which is prejudicial to the overall balance of the cycle.
Other solutions provide a recirculation of air coming from orifices formed close to the leading edges of the vanes then redirected into the air passage upstream of the leading edges in an axially symmetrical manner. The patent EP 2169237 implements such an arrangement in order to reduce the separations with an intake of air over the blades, like the aforementioned patents U.S. Pat. No. 6,210,104 and FR 2937385. The reintroduction which is effected upstream of the blades of the diffuser only affects the incidence on the leading edge of the diffuser.
The invention seeks to combat more effectively the separation of the boundary air layer by actively stabilising this layer. In order to do this, the invention provides for re-energising the boundary layer with air at a higher pressure by a blowing/suction coupling.
More precisely the present invention relates to a method of blowing air into a compression stage diffuser of a compressor of a gas turbine. Such a diffuser includes two end plates enclosing a plurality of circumferential blades. The air flow along the blades is effected from a leading edge to a trailing edge of the diffuser. In this method, coupling of an injection of air into the air passage upstream of the diffuser is carried out with a withdrawal of air originating from the downstream air passage via an air intake at the leading edges, upstream relative to the trailing edges situated downstream. Blowing of the injected air occurs in the air passage from upstream to downstream via this air intake. The injection is oriented so that the injected air blows into the air passage along the blades and/or the end plates. Withdrawal of this air is then effected by suction into the air passage at the trailing edges, so that the pressure of the air withdrawn is substantially higher than the pressure of air flowing in the region of the withdrawal. Thus, the transition from a laminar boundary layer of the air flow to a turbulent layer is initiated and/or reinforced by an increase in its energy level.
The injection may be oriented from 0° to approximately ±90° relative to a normal to the injection face. Air is advantageously injected as tangentially as possible to the injection face in the direction of the air flow. Thus, the transition from a laminar boundary layer of the air flow to a turbulent layer is initiated and/or reinforced by an increase in its energy level.
Such blowing therefore makes it possible to “stabilise” a boundary layer by making it turbulent when it is laminar, and thus to delay the separations since a turbulent boundary layer is intrinsically more stable than a laminar boundary layer. When the boundary layer is turbulent, this supply of energy delays the appearance of separations. In addition, even if the separation of the air flow is already initiated, the supply of energy can likewise enable the reattachment of the boundary layer.
The phenomenon of re-energisation according to the invention can be reinforced by the “coanda” effect which appears when a jet of air is situated close to a convex wall. This effect results in attraction of the fluid towards the wall. This “coanda” effect can be maximised depending upon the speed and the angle of ejection of the air in the region of the withdrawal.
According to advantageous embodiments, the method according to the invention provides for withdrawing air either downstream of the diffuser, in a subsequent grille of the stage or in a subsequent stage, or in the diffuser concerned, in particular near to the trailing edge of the blades.
In the event that air is withdrawn in the diffuser, according to more particular embodiments:
The invention also relates to a diffuser suitable for carrying out such a method. Such a diffuser of a compressor of the centrifugal or mixed type includes two end plates enclosing a plurality of circumferential blades. At least one upstream transverse passage is produced in the lower and/or upper surface of blades and/or in an end plate in at least one point for injection of air into the air passage, situated in the leading edge zone of the upstream side of the diffuser, in the compression direction of the gas turbine. This passage is capable of forming an injection/withdrawal coupling in the air passage by a recirculation in the diffuser and/or along the end plate outside the diffuser. The withdrawal of air at at least one point in the trailing edge zone of the downstream side of the diffuser is carried out by suction in at least one groove formed along a flank of the blades and/or in the internal face of the end plate.
According to some preferred embodiments:
Other details, characteristics and advantages of the present invention will become clearer by reading the following description, which is not limited, with reference to the appended drawings, in which, respectively:
a to 2c show perspective views of a diffuser with blades with one and two end plates, as well as that of an isolated blade (
a and 3b show schematic views in longitudinal section and from above of a first example of a diffuser according to the invention with withdrawal and blowing of air on a blade;
a and 4b show schematic views in longitudinal section and from above of a second example of a diffuser with withdrawal and blowing of air on a blade according to the invention;
a and 6b show a schematic front view and an enlarged view of an end plate of an example of a diffuser with withdrawal and blowing on an end plate.
The terms “downstream” and “upstream” qualify positions with respect to the flow of the air streams. In all the drawings, identical reference signs refer to the passages in the description in which the elements corresponding to these reference signs are defined.
With reference to the schematic view in partial cross-section of a gas turbine 1 of a helicopter according to
The compressor 5 is centrifugal here and the compressed stream F then comes out of the impeller 4 radially. When the compressor is mixed, the flow comes out inclined at an angle of between 0° and 90° relative to a radial direction, perpendicular to the axis X′X.
The stream F then passes through a diffuser 6 formed at the outlet of the compressor 4, in order to be adjusted and routed towards inlet channels 7 of the combustion chamber 8.
In order to effect this adjusting, the diffuser 6 is composed of a plurality of curved blades 60 formed between two end plates on the periphery of the impeller 4—in this case radially—and therefore rotating about the axis X′X.
a shows more precisely a perspective view of the diffuser 6 with blades 60 joined to two end plates 61. In
The blades exhibit a progression of thickness between their flanks 6p, which is sufficient to form grooves there as described below. This thickness can attain a few millimetres over 20% to 100% of the mean curvilinear abscissa Sm of the blade 60 along the mean surface Fm.
With the aid of
A longitudinal groove 62 now appears on the longitudinal sectional view of
Moreover, the blade 60 is provided with a series of orifices 63 opening into the air passage V between the blades 60 via of cylindrical blowing cavities 64. As illustrated by
These cavities for blowing air 64 are inclined downstream by an angle of between 0 and 90°, for example of 30°, with respect to the mean curvilinear abscissa Sm of the blade. The streams Fi emerge through the orifices 63 and blow downstream into the air passage V. Thus a part of these streams as well as other streams coming from adjacent blades are drawn in, in the form of streams Fi, from the air passage V towards the groove 62 in the trailing edge 6f zone (in the region of the trailing edge 6f in the illustrated example).
The streams Fi are then injected by suction into the groove 62 of the blade 60 on the upstream side where the pressure is lower. The recirculation of the air streams via the groove between the trailing edge 6f and the leading edge 6a zones produces an intake/blowing coupling. The re-energisation of the incoming air streams then makes it possible to stabilise these streams and to prevent the separation thereof or optionally to recombine them if the separation has been initiated. The intake on the trailing edge, or in zones close to the trailing edge, likewise make it possible to mitigate—in fact to eliminate—the zones which are potentially still separated.
Alternatively, the cavities may open on the upper surface 6e, and/or these cavities can be replaced by one or more slots formed on a flank 6p. Grooves can also be machined on the two opposing flanks 6p, whilst retaining a central base portion 66 of the grooves.
With reference to
The difference between this example and the first example of the diffuser relates to the means of drawing the air stream Fi into the groove 62 in the region of the trailing edge 6f. According to this second example, the streams Fi are reinjected via cavities 74 produced in the lower surface 6i of the trailing edge 6f and opening into the groove 62. The intake cavities are substantially transverse in the illustrated example. Alternatively, they can be inclined by an angle close to ±90° with respect to the normal to the curvilinear abscissa Sm of the blade 60 depending on the configurations. They can also be replaced by slots like the blowing cavities 64.
Other variants for these first and second examples are illustrated in the diagrams 5a to 5k of
The diagrams 5a to 5c relate to blades 60 of grooves 62a to 62c respectively of constant width “e” and opening onto the trailing edge 6f (groove 62a, diagram 5a), or of linearly variable width “e” as a function of the mean curvilinear abscissa Sm of the blade 60 (grooves 62b and 62c, diagrams 5b and 5c). The groove may be a through groove (groove 62a and 62c, diagrams 5a and 5c) or a blind groove (groove 62b, diagram 5b) on the trailing edge 6f. When the groove is a through groove, the trailing edge 6f then has shaped rims 67 in order to optimise the intake of air.
Moreover, the intake cavities 74 and injection cavities 64 can open onto the same faces: the lower surface 6i (diagrams 5d and 5e) or the upper surface 6e (diagrams 5f and 5g). They can also open onto different faces: the upper surface 6e for the intake cavities 74 and the lower surface 6i for the re-injection cavities 64 (diagram 5h), or the lower surface 6i for the intake cavities 74 and the upper surface 6e for the re-injection cavities 64 (diagram 5i). The diagrams 5d to 5i show a blind groove 62b of linearly increasing width.
Furthermore, the cavities or slots may be positioned and open at any point on the length of the groove, with angles which can tend towards ±90° with respect to the normal to the curvilinear abscissa of the blade.
The grooves can in general extend over the entire length of the blade 60 or over a minimal length, close to 0% of the total length.
Moreover, a plurality of grooves can be machined on one and the same flank 6p, for example two grooves, as illustrated in diagrams 5j and 5k. In diagram 5j the grooves 6j and 6j′ follow one another along the blade 60. In diagram 5k the grooves 6k and 6k′ are substantially parallel along the blade 60.
Moreover,
The holes 72 are inclined in relation to the end plate 61, as appears more precisely with reference to the enlarged diagram of
The invention is not limited to the examples described and illustrated. Thus the cavities and slots are not necessarily cylindrical or partially cylindrical but may be of varied cross-section: prismatic, oblong, etc. Moreover, when the withdrawal and the re-injection of air is effected through the end plate, the transit housing can be formed in the casing or in the hub of the diffuser.
Number | Date | Country | Kind |
---|---|---|---|
11 54211 | May 2011 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2012/051087 | 5/15/2012 | WO | 00 | 1/6/2014 |