The invention relates in general to turbine engines and, more particularly, to exhaust diffusers for turbine engines.
Referring to
The exhaust section 18 can be configured as a diffuser 28, which can be a divergent duct formed between an outer shell 30 and a center body or hub 32 and a tail cone 34 supported by support struts 36. The exhaust diffuser 28 can serve to reduce the speed of the exhaust flow and thus increase the pressure difference of the exhaust gas expanding across the last stage of the turbine. In some prior turbine exhaust sections, exhaust diffusion has been achieved by progressively increasing the cross-sectional area of the exhaust duct in the fluid flow direction, thereby expanding the fluid flowing therein, and is typically designed to optimize operation at design operating conditions. Additionally, gas turbine engines are generally designed to provide desirable diffuser inlet conditions at the design point, in which the exhaust flow passing from the turbine section 16 is typically designed to have radially balanced distributions of flow velocity and swirl.
Various changes in the operation of the gas turbine engine may result in less than optimum flow conditions at the diffuser inlet and, in particular, can result in radially distorted flow entering the diffuser. For example, operation at an off-design operating point, e.g., part load operation or an off-design ambient air inlet temperature, may result in a radially non-uniform velocity distribution entering the diffuser.
In accordance with an aspect of the invention, an exhaust diffuser is provided in a gas turbine engine. The exhaust diffuser comprises an inner boundary and an outer boundary forming an annular gas path, and a plurality of strut structures extend radially between the inner boundary and the outer boundary and are located within the gas path downstream of a last row of rotating blades. Each of the strut structures include pressure and suction side walls extending in a downstream axial direction from a leading edge toward a downstream trailing edge of the strut structure. A plurality of radially spaced flow injectors are formed in at least one of the pressure and suction side walls for injecting a fluid flow into the gas path adjacent to the strut structure. At least two fluid supply conduits are connected to provide a fluid flow to respective radially spaced flow injectors, and a flow control device is associated with each of the conduits to independently control a fluid flow from a fluid source to each of the radially spaced flow injectors.
Each of the flow injectors may discharge a flow of gas downstream substantially parallel to an outer surface of the at least one of the pressure and suction side walls to direct a portion of an exhaust flow passing over the strut structure toward a radial section of the strut structure associated with each of the flow injectors. The flow of gas from each of the flow injectors may produce a Coanda effect to entrain and accelerate a portion of the exhaust flow to result in substantially attached flow along the at least one of the pressure and suction side walls.
The two fluid supply conduits may include at least a first conduit supplying a fluid flow to a first flow injector adjacent to the inner boundary and a second conduit supplying a fluid flow to a second flow injector adjacent to the outer boundary. The first and second flow injectors may be elongated in a radial direction to provide a Coanda flow to radially extending sections of the at least one of the pressure and suction side walls, and each of the first and second flow injectors may be defined by a continuous elongated slot. Alternatively, each of the first and second flow injectors may be defined by a plurality of discrete openings. A further flow conduit may supply a fluid flow to a flow injector located radially midway between the first and second flow injectors.
The flow injectors may be located extending radially adjacent to the leading edge of the strut structure.
In accordance with another aspect of the invention, an exhaust diffuser is provided in a gas turbine engine. The exhaust diffuser comprises an inner boundary and an outer boundary forming an annular gas path, and a plurality of struts extend radially between the inner boundary and the outer boundary and are located within the gas path downstream of a last row of rotating blades. An airfoil shaped strut shield surrounds each of the struts, each of the strut shields including pressure and suction side walls extending in a downstream axial direction from a leading edge toward a downstream trailing edge of the strut shield. A plurality of radially spaced flow injectors are formed in the suction side wall. The flow injectors inject a fluid flow into the gas path adjacent to the strut shield to produce a Coanda jet flow adjacent to the suction side wall to entrain and accelerate a portion of the exhaust flow to result in substantially attached flow along the suction side wall. Each of the flow injectors are connected to a respective fluid supply conduit to provide a fluid flow to the flow injectors, and a flow control device is associated with each of the conduits to independently increase or decrease the mass flow rate of a fluid flow from a pressurized fluid source to the radially spaced flow injectors.
The fluid flow to the flow injectors may be changed to provide different mass flows along the radial extent of the strut shield, as an operating condition of the engine is changed.
In accordance with a further aspect of the invention, a method of controlling exhaust diffusion in a turbine engine is provided comprising the steps of: providing a turbine engine having a turbine section and an exhaust diffuser section, the exhaust diffuser section including an inner boundary and an outer boundary spaced radially from the inner boundary so that a flow path is defined therebetween, and strut structures extending radially through the flow path between the inner and outer boundaries, and the strut structures each including a pressure side wall and a suction side wall extending axially in a direction of flow through the flow path; supplying a flow of turbine exhaust gas to the flow path; supplying a first Coanda jet flow at a first mass flow rate along at least one of the pressure and suction side walls at a first location adjacent to the inner boundary; supplying a second Coanda jet flow at second mass flow rate along the at least one pressure and suction side wall at a second location radially outward from the first location; and wherein a fluid supply to the first Coanda jet flow is controlled separately from a fluid supply to the second Coanda jet flow.
The first mass flow rate of the first Coanda jet flow may be different than the second mass flow rate of the second Coanda jet flow.
The method may further include changing the mass flow rate of one of the first and second Coanda jet flows relative to the other of the first and second Coanda jet flows.
While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed that the present invention will be better understood from the following description in conjunction with the accompanying Drawing Figures, in which like reference numerals identify like elements, and wherein:
In the following detailed description of the preferred embodiment, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, a specific preferred embodiment in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention.
Embodiments of the invention are directed to an exhaust diffuser system, which can increase the power and efficiency of a turbine engine. In accordance with an aspect of an invention, a diffuser design is described to provide an improved diffuser performance by providing decreased flow separation at strut structures extending radially through a flow path defined through the diffuser. In particular, an improved attachment of flow around the strut structures during operation of the turbine engine at changing or different operating conditions provides an improved performance, with minimized or reduced pressure losses and increased diffuser pressure recovery.
The outer boundary 48 is shown as comprising a diffuser shell 52 having an inner peripheral surface 54 defining the outer boundary 48 of the flow path 50. The diffuser shell 52 defines the axial length (only a portion of which is shown in
The inner boundary 46 can be defined by a center body, also referred to as a hub 58. The hub 58 may be generally cylindrical and may include an upstream end 60 and a downstream end 62. The terms “upstream” and “downstream” are intended to refer to the general position of these items relative to the direction of fluid flow through the exhaust diffuser section 40. The hub 58 is interconnected and supported to the diffuser shell 52 by a plurality of radially extending strut structures 64, that may comprise a structural strut 66 surrounded by a strut liner or shield 68, as seen in
Referring to
Referring to
As may be seen with reference to
The Coanda flow injectors 80 are provided with a supply of fluid, such as a supply of compressed air, to produce a Coanda effect or jet flow FC (
A flow separation may typically occur on the suction side 78b of the strut structure 64, due to a circumferential component of the exhaust flow, as is illustrated by the incoming flow direction arrow FI in
It may be noted that the Coanda flow injectors 80 may be defined by an upstream portion of the strut shield 68 overlapping an adjacent portion of the strut shield 68, i.e., the Coanda flow injectors 80 can be formed integrally in the structure of the strut shield 68, as depicted in
In accordance with an aspect of the invention, the flow of fluid to each of the individual flow injectors 80a, 80b, 80c can be controlled to vary the Coanda effect radially or span-wise along the strut structure 64. As can be seen in
As is further illustrated in
It may be recognized that the Coanda flow requirement at the suction side wall 78b will typically be greater than the Coanda flow requirement at the pressure side wall 78a, in that substantially all flow separation typically occurs at the suction side 78b, as is illustrated by the flow line FN in
It should be noted that the described configurations provide control over the mass flow of compressed fluid forming the Coanda flow at different radial locations, i.e., the mass flow rate of compressed fluid to one flow injector may be changed relative to the mass flow rate to any other flow injector, and may be used to improve the efficient use of compressed fluid supplied to the diffuser. Further, the mass flow of the fluid supplied to the Coanda flow injectors can be controlled to not exceed, or not substantially exceed, the amount of fluid flow required to improve attached flow of the exhaust gases along the strut structure 64. Hence, as the exhaust gas flow velocity magnitude, direction, swirl, and lateral/radial distribution can vary with varying engine operating conditions, e.g., with varying engine ambient inlet conditions and/or operation change of operation to part load, the Coanda flow provided to the flow injectors 80a, 80b, 80c can likewise be varied to match these span-wise exhaust gas flow variations, resulting in significant reductions in compressed fluid flow required to prevent separation.
In an alternative configuration, only suction side exit openings 80aS, 80bS, 80cS may be provided for producing a Coanda flow on only the suction side wall 78b of the strut structure 64. Since flow separation is typically observed along the suction side of the strut structure 64, advantages of the invention are substantially obtained by providing a Coanda flow out of the suction side exit openings 80aS, 80bS, 80cS, such that the pressure side exit openings 80aP, 80bP, 80cP may not be required.
Although the Coanda flow injectors 80 can be provided at an axial location anywhere along the pressure and suction side walls 78a, 78b between the leading and trailing edges 74, 76, a preferred location is adjacent to the leading edge 74, such as at or adjacent to a location where flow separation initially occurs. The pairs of exit openings 80aP and 80aS, 80bP and 80bS, 80cP and 80cS forming the flow injectors 80a, 80b, 80c can be defined by elongated slots, i.e., a continuous elongated slot for each of the flow injectors. Alternatively, the flow injectors 80a, 80b, 80c can each be defined by a plurality of discrete openings on the pressure and suction side walls 78a, 78b.
Although three flow injectors 80a, 80b, 80c are described, the invention also contemplates providing as few as two flow injectors, i.e., the first and second flow injectors 80a, 80b, where the mass flow through the first flow injector 80a controls flow separation along a radially inner span-wise section of the strut structure 64, e.g., adjacent to the inner boundary 46, and the mass flow through the second flow injector 80b separately controls flow separation along a radially outer span-wise section of the strut structure 64, e.g., adjacent to the outer boundary 48. Additional flow injectors, such as the intermediate flow injector 80c may be included to provide further refinement of the flow control by supplying a span-wise varying Coanda flow along the strut structure 64, as defined by the different flow injectors 80a, 80b, 80c. Further, it should be understood that the presently described configurations for the Coanda flow injector 80 are provided for illustrative purposes, such that a greater number than three flow injectors may be provided, and other compressed fluid supply and conduit configurations may also be provided.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2907557 | Coanda | Oct 1959 | A |
2988303 | Coanda | Jun 1961 | A |
3830450 | Williams et al. | Aug 1974 | A |
6200092 | Koschier | Mar 2001 | B1 |
6334753 | Tillman | Jan 2002 | B1 |
6997676 | Koshoffer | Feb 2006 | B2 |
20030059291 | Koshoffer et al. | Mar 2003 | A1 |
20080134685 | Bunker et al. | Jun 2008 | A1 |
20090263243 | Little et al. | Oct 2009 | A1 |
20110058939 | Orosa et al. | Mar 2011 | A1 |
20120186261 | Toprani et al. | Jul 2012 | A1 |
20130031913 | Little | Feb 2013 | A1 |
20130152592 | Orosa et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
1413713 | Apr 2004 | EP |
2613024 | Jul 2013 | EP |
2634381 | Sep 2013 | EP |
Number | Date | Country | |
---|---|---|---|
20150118015 A1 | Apr 2015 | US |