The application relates generally to gas turbine engines and, more particularly, to a combustor for gas turbine engines.
Many gas turbine engines combustors are formed having sheet metal walls. It is common to manufacture these sheet metals walls by seam welding several sheet metal components together, including to form the exit ducts of such combustors. However, seam welds undergo thermal stresses during engine operation as warmer parts of the sheet metal walls thermally expand, while colder parts of the sheet metal walls do not thermally expand, or expand less. This thermal imbalance is accentuated by the necessity of having an overlap at the seam weld between the two sheet metal walls. This overlap prevents cooling air from outside of the combustor from reaching the vicinity of the seam weld.
In one aspect, there is provided a method of forming a combustor for a gas turbine engine, the method comprising: forming outer and inner annular combustor liners of sheet metal; and forming an exit duct at a downstream end of the outer and inner annular combustor liners, the exit duct including an annular forged metal section; and butt welding an upstream end of the annular forged metal section to the outer combustor liner to form a first annular joint, and welding fixing a downstream end of the forged metal section to an annular sheet metal wall to form a second annular joint, the annular sheet metal wall extending downstream from the forged metal section.
In another aspect, there is provided a gas turbine engine combustor, comprising outer and inner sheet metal combustor liners defining an exit duct at a downstream end, the exit duct circumscribing an annular combustor exit defining a combustion gas path therethrough, the exit duct including a large exit duct portion having an annular forged metal section, the annular forged metal section being butt welded at an upstream end thereof to the outer sheet metal combustor liner to form a first annular joint, the annular forged metal section being welded fixed at a downstream end thereof to an annular sheet metal wall to form a second annular joint, the annular sheet metal wall extending downstream from the annular forged metal section.
In a further aspect, there is provided an annular section of a gas turbine engine combustor, comprising: a forged metal annular body extending between an upstream end and a downstream end, the forged metal body upon installation of the annular section being butt welded along the upstream end to an outer sheet metal combustor liner to form a first annular joint, the forged metal body upon installation being fixed along the downstream end to an annular sheet metal wall to form a second annular joint.
There is also provided, in another alternate aspect, a method of repairing a gas turbine engine combustor, the method comprising: removing at least a section of a large exit duct of the combustor; replacing said removed section with an annular forged metal section; and butt welding an upstream end of the forged metal section to an upstream annular sheet metal wall of the large exit duct to form a first annular joint, and welding a downstream end of the forged metal section to a downstream annular sheet metal wall to form a second annular joint.
The method according to the above paragraph may also further comprises butt welding the downstream end of the forged metal section to the sheet metal wall to form the second annular joint.
Reference is now made to the accompanying figures in which:
The combustor 16 disclosed herein may be fixed to a downstream component, such as a turbine vane assembly 18′, in a manner preventing any substantial relative movement therebetween. While the use of sliding joints exists, these sliding joints being located between the end of the combustor exit and the downstream turbine vane assembly, the embodiments of the combustor 16 as described herein employ a fixed interconnection (e.g. using fasteners, welded connections, etc.) between the combustor exit duct 16′ and the downstream turbine vane assembly 18′. In most embodiments, therefore, the combustor 16 disclosed herein does not have a sliding joint which permits relative movement along the longitudinal center axis of the gas turbine engine 10 when the combustor 16 and/or its components undergo thermal expansion.
When the combustion gases leave the combustor 16 via its exit duct 16′, they are fed into the turbine vane assembly 18′ disposed immediately downstream therefrom. The turbine vane assembly 18′ includes a plurality of turbine vanes which, inter alia, guide the flow of combustion gases to the turbine rotors 17 downstream from therefrom. As will be seen, the combustor 16, and more particularly the exit duct 16′ thereof, is configured to reduce the thermal stress at one or more of the welded annular joints of the exit duct 16′ by directly exposing one or more of the welded annular joints to the cooler air circulating outside the combustor 16. This reduction in thermal stress helps to increase the fatigue life of the welded joint.
Referring to
The combustion gases flow along a combustion gas path 24 in a downstream direction. The combustion gas path 24 extends between the LED 20 and the SED 29. Together, the LED 20 and the SED 29 convey the combustion gases downstream toward the combustor exit 33 of the exit duct 16′, and ultimately, into the turbine vanes 13 of the downstream turbine vane assembly 18′. The LED 20 is typically a continuous annular body about the longitudinal center axis of the gas turbine engine. The present disclosure generally relates to the LED 20 of the combustor, and reference to an “exit duct” herein designates the LED 20 unless stated otherwise. It will however be appreciated that the annular joints disclosed herein can also be used to join components of the SED 29 together.
Still referring to
The forged metal section 30 is an annular metal piece that is inserted between two sheet metal sections of the LED 20, and forms an annual flange defining a radially extending annular gap 40 therein which is adapted to receive the turbine vane platform(s) 41 of the turbine vane assembly 18′.
The forged metal section 30 achieves its shape and strength during a forging manufacturing process, which forms and shapes the forged metal section 30 using localized compressive forces. In a typical forging process, a mold is made in the final shape of the forged metal section 30. A plate or ingot of suitable metal is placed within the mold after being heated. High pressures are applied to the metal by a suitable compression tool. The high pressures cause the metal to flow throughout the mold such that when the mold is open, a roughly-formed metal piece in the shape of the forged metal section 30 is created. The roughly-formed metal piece can be machined or finished before installation in the LED 20, or undergo other chemical or mechanical treatments.
The forged metal section 30 is not formed from sheet metal. In contrast to the forging process described above, sheet-metal forming involves the use of metal stock consisting of sheet, strip, or ribbon metal. Sheet-metal forming is used in the production of flat and folded articles where the thickness of the final part is considerably less than the other dimensions. Sheet-metal forming (especially cold stamping) does not usually require metal cutting to finish the sheet metal.
The forged metal section 30 can take any suitable shape. In the embodiment shown in
In conventional combustor exit ducts, a component similar to the downstream hot wall segment may be at risk of oxidation due to its position within the combustion gas path 24. The downstream hot wall segment 34 of the present disclosure may therefore be made shorter, and have a more easily replaceable extension exit lip 37 attached thereto. The exit lip 37 can be butt welded to an extremity of the downstream hot wall segment 34 and extend away therefrom. The presence of the replaceable exit lip 37 facilitates repair of the forged metal section 30. The exit lip 37 may also be made of a different material than that of the forged metal section 30 with better oxidation properties.
The forged metal section 30 also has a downstream cold wall segment 36 which is radially spaced outwardly from the downstream hot wall segment 34 to define a radial gap therebetween. Such an embodiment of the forged metal section 30 positions or spaces the upstream end of the forged metal section 30 radially apart from its downstream end. The radially outward spacing of the downstream cold wall segment 36 and its disposition outside of the combustion gas path 24 helps to reduce its exposure to the relatively hot combustion gases. It may therefore experience less thermal expansion, and thus, less thermal stress than components facing or within the combustion gas path 24.
An intersection of the upstream hot wall segment 32, the downstream hot wall segment 34, and the downstream cold wall segment 36 define a thickness 39 of metal of the forged metal section 30. A thickness 39, which may be at least partially in the radial direction, of the forged metal section 30 may help the forged metal section 30 to better resist thermal stresses. A component having such a thickness 39 cannot be easily formed out of sheet metal, if it can be formed at all. Furthermore, in at least one embodiment, the forged metal section 30 includes a number of cooling holes extending fully radially therethrough and dispersed axially along the forged metal section 30 for allowing the passage of cooler air therethrough.
As mentioned above, the upstream end of the forged metal section 30 is butt welded to the downstream end of the sheet metal outer combustor liner 22 by the first annular joint 31 of the LED 20. More particularly, with the forged metal section 30 shaped as shown in
The terms “butt weld”, “butt welded”, or “butt welding” as used herein refer to a weld that joins two components together, in this case the forged metal section 30 and the curved wall portion 19 of the outer combustor liner 22, without any overlap. As such, the two “butt ends” of the welded components are abutted together and welded in place, without either of the components overlapping each other. The butt welded joint may be made by gradually heating up the two weld ends with a weld plate and then joining them under a specific pressure. The weld at the joint can then be ground or machined to provide a smooth finish, and can be further processed if desired.
The butt welded joint(s) 31, 35 of the LED 20 differ from overlapping seam welds of the prior art. These prior art seam welds are used to join sheet metal components in a combustor by overlapping parts of the sheet metal and fusing the overlapped sheets together. Such seam welds may have high stresses due to the thermal growth mismatch of the two sheet metal walls it attaches, one being relatively hot and the other relatively cold. The thermal imbalance is accentuated by the necessity of having an overlap required by the seam weld. The overlap of the seam weld prevents the cooling air from outside of the combustor from reaching the areas in the vicinity of the seam weld.
The butt weld 38 of the first annular joint 31 may therefore contribute to reducing thermal imbalance between the hotter upstream outer combustor liner 22 and the forged metal section 30, thus contribute to reducing stresses at the joint. Since neither the outer combustor liner 22 or the forged metal section 30 overlap one another at the first annular joint 31, the first annular joint 31 is directly exposed on its outer surface to the plenum 51 surrounding the exit duct 16′, the plenum 51 having pressurized cooling air therein during operation of the engine.
A downstream end of the forged metal section 30 is welded to an upstream end of the annular sheet metal 26 to form the second annular joint 35 of the LED 20. Since the second annular joint 35 may not be disposed within, or exposed directly to, the hot combustion gas path 24, it may undergo less stress, and therefore it is not necessary to have a butt welded second annular joint 35. Indeed, the second annular joint 35 may be exposed to lower temperatures because it may be shielded by a component of the turbine vane assembly 18′, or because it is not directly exposed to the combustion gas path 24.
Accordingly, while other weld or fastening techniques may be used at the second annular joint 35, the downstream end of the forged metal section 30 may nevertheless also be butt welded to the sheet metal wall 26 to form the second annular joint 35. More particularly, with the forged metal section 30 shaped as shown in
The annular sheet metal wall 26 is the downstream component of the LED 20. As can be seen in
It can thus be appreciated that the forged metal section 30, although not a sheet metal component itself, is welded at both of its extremities to sheet metal components (i.e. the outer combustor liner 22 and the sheet metal wall 26) by the first and second joints 31, 35 respectively.
Referring now to
The method also includes forming an exit duct 16′ between the outer and inner combustor liners by butt welding an upstream end of the annular forged metal section 30 to the outer combustor liner 22 to form a first annular joint 31. The method also includes welding a downstream end of the forged metal section 30 to the annular sheet metal wall 26 to form the second annular joint 35.
Still referring to
The method also includes the removed section with the annular forged metal section 30, as shown in
It can thus be appreciated that the formation of one or more butt welded annular joints in the LED 20 is an improvement over the seam welds of conventional sheet metal LEDs in that the butt weld helps to reduce the thermal imbalance because the annular joint does not have any overlapping parts, thus the joint is exposed on one of its side to cooling. Furthermore, the use of a forged metal section 30 rather than sheet metal allows for the butt welded joints, as well as for the creation of a specific and complex shape. This may not be possible with sheet metal, and especially a single piece of sheet metal, because such a complicated sheet metal liner may not be able to accommodate the expansion resulting from thermal sources. Therefore, the use of one or more butt weld to attach the forged metal section 30 to the neighbouring sheet metal combustor parts may be used in situations where localised hot spots are present.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3844116 | Matto | Oct 1974 | A |
4133633 | Fehler | Jan 1979 | A |
4195475 | Verdouw | Apr 1980 | A |
4195476 | Wood | Apr 1980 | A |
4232527 | Reider | Nov 1980 | A |
4785623 | Reynolds | Nov 1988 | A |
5398496 | Taylor | Mar 1995 | A |
6079199 | McCaldon | Jun 2000 | A |
6253538 | Sampath | Jul 2001 | B1 |
6269628 | Gates | Aug 2001 | B1 |
6495207 | Prociw | Dec 2002 | B1 |
6530971 | Cohen | Mar 2003 | B1 |
7302801 | Chen | Dec 2007 | B2 |
7350358 | Patel et al. | Apr 2008 | B2 |
7942006 | Critchley | May 2011 | B2 |
8397512 | Hessler et al. | Mar 2013 | B2 |
9657949 | Stastny | May 2017 | B2 |
20020162331 | Coutandin | Nov 2002 | A1 |
20020178734 | Stastny | Dec 2002 | A1 |
20040040307 | Dimov | Mar 2004 | A1 |
20040107574 | Moertle | Jun 2004 | A1 |
20050076650 | Dudebout | Apr 2005 | A1 |
20050120718 | Markarian | Jun 2005 | A1 |
20060042263 | Patel | Mar 2006 | A1 |
20060042271 | Morenko | Mar 2006 | A1 |
20060053797 | Stastny | Mar 2006 | A1 |
20060101828 | Patel | May 2006 | A1 |
20070227150 | Alkabie | Oct 2007 | A1 |
20070271926 | Alkabie | Nov 2007 | A1 |
20080148738 | Rudrapatna | Jun 2008 | A1 |
20100050650 | Patel | Mar 2010 | A1 |
20100095525 | Shaw | Apr 2010 | A1 |
20100236257 | Grivas | Sep 2010 | A1 |
20100257864 | Prociw | Oct 2010 | A1 |
20130283806 | Monaghan | Oct 2013 | A1 |
20140260275 | Melton | Sep 2014 | A1 |
20140290252 | Uemura et al. | Oct 2014 | A1 |
20140338346 | Stastny | Nov 2014 | A1 |
20140366544 | Maccaul | Dec 2014 | A1 |
20150113994 | Hu | Apr 2015 | A1 |
20150121885 | Yokota | May 2015 | A1 |
20150247641 | Patel | Sep 2015 | A1 |
20160040543 | Stastny | Feb 2016 | A1 |
20170363295 | Stastny | Dec 2017 | A1 |
20170363296 | Stastny | Dec 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20170023249 A1 | Jan 2017 | US |