This disclosure relates to a gas turbine engine, and more particularly to a gas turbine engine component and a core assembly for defining internal cooling features within a completed component.
Gas turbine engines typically include a compressor section, a combustor section and a turbine section. In general, during operation, air is pressurized in the compressor section and is mixed with fuel and burned in the combustor section to generate hot combustion gases. The hot combustion gases flow through the turbine section, which extracts energy from the hot combustion gases to power the compressor section and other gas turbine engine loads.
Due to exposure to hot combustion gases, some gas turbine engine components include an internal cooling scheme that routes cooling air through the part. For example, the internal cooling scheme may define multiple hollow passages through which the cooling air may be circulated. Thermal energy is transferred from the component to the airflow as the cooling air passes through the cooling scheme to cool the component.
Some components, such as airfoils, are typically molded parts. The internal cooling passages required to communicate cooling air through the part are typically formed using core assemblies that are over-molded during a casting or other molding process to define the hollow passages inside the component.
A component according to an exemplary aspect of the present disclosure includes, among other things, an airfoil that includes a first sidewall and a second sidewall joined together at a leading edge and a trailing edge and extending from a base to a tip. A plenum is defined inside the airfoil. A first cooling cavity merges into the plenum and a second cooling cavity merges into the plenum. A rib extends from at least one of the first sidewall and the second sidewall at least partially into the plenum to separate the first cooling cavity from the second cooling cavity.
In a further non-limiting embodiment of the foregoing component, the component is a blade.
In a further non-limiting embodiment of either of the foregoing components, the component is a vane.
In a further non-limiting embodiment of any of the foregoing components, the rib extends across the plenum.
In a further non-limiting embodiment of any of the foregoing components, the rib extends between opposing sides of the plenum.
In a further non-limiting embodiment of any of the foregoing components, the rib extends transversely between the opposing sides.
In a further non-limiting embodiment of any of the foregoing components, the rib defines a surface that constricts a flow of cooling fluid that exits at least one of the first cooling cavity and the second cooling cavity into the plenum.
In a further non-limiting embodiment of any of the foregoing components, a portion of the rib extends from at least one of the first sidewall and second sidewall and terminates prior to the other of the first sidewall and the second sidewall.
In a further non-limiting embodiment of any of the foregoing components, a third cooling cavity merges into the plenum.
In a further non-limiting embodiment of any of the foregoing components, the third cooling cavity exits adjacent to another rib.
In a further non-limiting embodiment of any of the foregoing components, the plenum is positioned in the tip.
In a further non-limiting embodiment of any of the foregoing components, the rib includes a face that is offset from an outlet of at least one of the first cooling cavity and the second cooling cavity.
A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a component disposed in at least one of a compressor section and a turbine section. The component includes a body that includes a first sidewall and a second sidewall joined together at a leading edge and a trailing edge and extending from a base to a tip. The component has an internal cooling scheme comprising a cooling cavity that merges into a plenum and a rib that extends from at least one of the first sidewall and the second sidewall into the plenum to control expansion of a cooling fluid from the cooling cavity into the plenum.
A core assembly for fabricating a component according to an exemplary aspect of the present disclosure includes, among other things, a first core that defines a first cooling cavity of a component and a second core that defines a second cooling cavity of the component. A partial rib extends from the first core and the second core and defines a plenum of the component. At least one cut-out in the partial rib defines a rib in the component.
In a further non-limiting embodiment of the foregoing core assembly, the component is a completed component.
In a further non-limiting embodiment of either of the foregoing core assemblies, a third core defines a third cooling cavity of the component.
In a further non-limiting embodiment of any of the foregoing core assemblies, the partial rib extends from the third core.
In a further non-limiting embodiment of any of the foregoing core assemblies, at least one cut-out includes a plurality of cut-outs disposed on opposing faces of the partial rib.
The various features and advantages of this disclosure will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.
This disclosure is directed to a gas turbine engine component and a core assembly for defining internal cooling features within a completed component. Among other features, an exemplary cooling scheme may include partial ribs that both structurally transition between a cavity and a plenum and improve effective heat transfer between a cooling fluid and the component. For example, the ribs described herein increase the amount of surface area available for exchanging heat and conduct heat away from the walls of the component. Flow of the cooling fluid is constrained in certain directions by reducing area, thereby maintaining heat transfer coefficients relatively high as the cooling fluid enters the plenum of the component.
The gas turbine engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine centerline longitudinal axis A. The low speed spool 30 and the high speed spool 32 may be mounted relative to an engine static structure 33 via several bearing systems 31. It should be understood that other bearing systems 31 may alternatively or additionally be provided.
The low speed spool 30 generally includes an inner shaft 34 that interconnects a fan 36, a low pressure compressor 38 and a low pressure turbine 39. The inner shaft 34 can be connected to the fan 36 through a geared architecture 45 to drive the fan 36 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 35 that interconnects a high pressure compressor 37 and a high pressure turbine 40. In this embodiment, the inner shaft 34 and the outer shaft 35 are supported at various axial locations by bearing systems 31 positioned within the engine static structure 33.
A combustor 42 is arranged between the high pressure compressor 37 and the high pressure turbine 40. A mid-turbine frame 44 may be arranged generally between the high pressure turbine 40 and the low pressure turbine 39. The mid-turbine frame 44 can support one or more bearing systems 31 of the turbine section 28. The mid-turbine frame 44 may include one or more airfoils 46 that extend within the core flow path C.
The inner shaft 34 and the outer shaft 35 are concentric and rotate via the bearing systems 31 about the engine centerline longitudinal axis A, which is co-linear with their longitudinal axes. The core airflow is compressed by the low pressure compressor 38 and the high pressure compressor 37, is mixed with fuel and burned in the combustor 42, and is then expanded over the high pressure turbine 40 and the low pressure turbine 39. The high pressure turbine 40 and the low pressure turbine 39 rotationally drive the respective high speed spool 32 and the low speed spool 30 in response to the expansion.
Each of the compressor section 24 and the turbine section 28 may include alternating rows of rotor assemblies and vane assemblies (shown schematically) that carry airfoils that extend into the core flow path C. For example, the rotor assemblies can carry a plurality of rotating blades 25, while each vane assembly can carry a plurality of vanes 27 that extend into the core flow path C. The blades 25 create or extract energy (in the form of pressure) from the core airflow that is communicated through the gas turbine engine 20 along the core flow path C. The vanes 27 direct the core airflow to the blades 25 to either add or extract energy.
Various components of the gas turbine engine 20, including but not limited to the airfoils of the blades 25 and the vanes 27 of the compressor section 24 and the turbine section 28, may be subjected to repetitive thermal cycling under widely ranging temperatures and pressures. The hardware of the turbine section 28 is particularly subjected to relatively extreme operating conditions. Therefore, some components may require internal cooling schemes for cooling the parts during engine operation.
The component 50 includes an airfoil 52 (or other body portion) that axially extends between a leading edge 54 and a trailing edge 56. The airfoil 52 may additionally include a pressure sidewall 58 (i.e., a first sidewall) and a suction sidewall 60 (i.e., a second sidewall) that are spaced apart from one another and that join together at each of the leading edge 54 and the trailing edge 56. The component 50 in one embodiment additionally includes a platform 51 and a root 53. The airfoil 52 extends outwardly from the platform 51 and the root 53 extends outwardly in an opposed direction from the platform 51. The airfoil 52 extends from a base 62 adjacent to the platform 51 to a tip 64.
The component 50 may include an internal cooling scheme 55 for cooling the component 50. The internal cooling scheme 55 includes one or more cooling cavities 72 (in this embodiment, two cooling cavities are shown in phantom). It should be appreciated that the component 50 could include additional cooling cavities or only a single cooling cavity. The cooling cavities 72 may be in fluid communication with one another, such as along a serpentine path, or could alternatively be fluidly isolated from one another.
The cooling cavities 72 extend radially, axially and/or circumferentially inside of the airfoil 52 or other sections of the component 50 and establish hollow passages for receiving and circulating a cooling fluid 68, such as relatively cool air from the compressor section 24, to cool the component 50. Although not shown by
The component 50 may be manufactured in a casting process. One exemplary casting process includes the initial step of fabricating the core assembly 80 to include features that define the internal cooling cavities 72 (see
In one embodiment, the core assembly 80 is a ceramic core. In another embodiment, the core assembly 80 is a refractory metal core (RMC). In another embodiment, the core assembly 80 is a hybrid core (for example, a hybrid of a ceramic core and a RMC core). Other materials are also within the scope of this disclosure.
In one embodiment, the plenum 82 is positioned in the tip 64 of the body 75; however, the plenum 82 could be located elsewhere. In addition, the cooling cavities 72A, 72B and the plenum 82 are not limited to the configuration shown in which the cooling cavities 72A, 72B radially feed the axially disposed plenum 82. For example, the cooling cavities 72A, 72B could axially feed a radially disposed plenum 82 within the scope of this disclosure.
A rib 84 separates the first cooling cavity 72A from the second cooling cavity 72B. In one embodiment, one or more ribs 84 extend into the plenum 82. In this way, the rib(s) 84 structurally supports the transition area between the cooling cavities 72A, 72B and the plenum 82.
In one embodiment, the rib 84 extends from the suction sidewall 60 into the plenum 82. However, the rib 84 could also extend from the pressure sidewall 58 within the scope of this disclosure. The rib 84 may be as thick as the sidewall 58, 60, or could extend further into part of the plenum 82. In one embodiment, the rib 84 terminates prior to the opposite sidewall 58, 60 (see rib 184 of
As best illustrated by
The ribs 184 can control the expansion of cooling fluid 68 into the plenum 182. For example, cooling fluid 68 that exits the cooling cavities 172A, 172B and 172C is forced to travel along a surface 99 of the ribs 184 prior to circulating through the plenum 182. Put another way, the ribs 184 increase the amount of area available to perform heat transfer and conduct heat away from the suction sidewall 160 (or pressure sidewall 158) of the completed component 50A by constricting the flow of the cooling fluid 68 in a specific direction (here, a direction toward a center 101 of the completed component 50A).
The ribs 184 may also act as augmentation features that convect heat away from hot surfaces of the suction sidewall 160 and/or the pressure sidewall 158. In one embodiment, the ribs 184 include a face 103 that extends past, or is circumferentially offset from, an outlet 105 of each cooling cavity 172A, 172B and 172C. The surfaces 99 of the rib 184 force the cooling fluid 68 to flow across the face 103, thereby increasing heat transfer.
The partial rib 94 defines a plenum of the completed component. One or more cutouts 96 may be disposed in a face 95 of the partial rib 94. The cutouts 96 define the ribs of a completed component. In one embodiment, the cutouts 96 are disposed on opposing faces 95 of the partial rib 94 in order to cast ribs on both a first sidewall and a second sidewall of the plenum. The core assembly 80 could include additional features.
Although the different non-limiting embodiments are illustrated as having specific components, the embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from any of the non-limiting embodiments in combination with features or components from any of the other non-limiting embodiments.
It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed and illustrated in these exemplary embodiments, other arrangements could also benefit from the teachings of this disclosure.
The foregoing description shall be interpreted as illustrative and not in any limiting sense. A worker of ordinary skill in the art would understand that certain modifications could come within the scope of this disclosure. For these reasons, the following claims should be studied to determine the true scope and content of this disclosure.
This invention was made with government support under Contract No. N00019-12-D-0002 awarded by the United States Navy. The Government therefore has certain rights in this invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/041222 | 6/6/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/020720 | 2/12/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3957391 | Vollinger | May 1976 | A |
4411597 | Koffel et al. | Oct 1983 | A |
4753575 | Levengood et al. | Jun 1988 | A |
5511937 | Papageorgiou | Apr 1996 | A |
5997251 | Lee | Dec 1999 | A |
6126396 | Doughty | Oct 2000 | A |
6164914 | Correia et al. | Dec 2000 | A |
6283708 | Zelesky | Sep 2001 | B1 |
6607355 | Cunha et al. | Aug 2003 | B2 |
6672836 | Merry | Jan 2004 | B2 |
6932571 | Cunha et al. | Aug 2005 | B2 |
6971851 | Liang | Dec 2005 | B2 |
7334991 | Liang | Feb 2008 | B2 |
8313301 | Hudson | Nov 2012 | B2 |
20060153680 | Liang | Jul 2006 | A1 |
20070189898 | Hooper et al. | Aug 2007 | A1 |
20110044822 | Hada et al. | Feb 2011 | A1 |
20140030102 | Mishra et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2015060973 | Apr 2015 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority for International application No. PCT/US2014/041222 dated Feb. 6, 2015. |
Extended European Search Report for European Application No. 14834595.2 dated Dec. 23, 2016. |
Number | Date | Country | |
---|---|---|---|
20160130950 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
61835731 | Jun 2013 | US |