A gas turbine engine typically includes a fan section, a compressor section, a combustor section, and a turbine section. Air entering the compressor section is compressed and delivered into the combustion section where it is mixed with fuel and ignited to generate a high-speed exhaust gas flow. The high-speed exhaust gas flow expands through the turbine section to drive the compressor and the fan section.
The efficiency of the engine is impacted by ensuring that the products of combustion pass in as high a percentage as possible across the turbine blades. Leakage around the blades reduces efficiency.
Thus, a blade outer air seal is provided radially outward of the blades to prevent leakage radially outwardly of the blades. The blade outer air seal may be held radially outboard from the rotating blade via connections on the case or a blade outer air seal support structure. The clearance between the blade outer air seal and a radially outer part of the blade is referred to as a tip clearance. Maintaining a proper tip clearance improves the efficiency of the gas turbine engine by reducing the amount of air leaking past the blade tips.
In one exemplary embodiment, an attachment body for a blade outer air seal includes a leading edge connected to a trialing edge by a radially inner wall and a radially outer wall. At least one forward hook extends from the radially outer wall. At least one aft hook extends from the radially outer wall. At least one post extends from the radially outer surface and has a blade outer air seal (BOAS) guide surface.
In a further embodiment of any of the above, the radially outer surface includes at least one BOAS attachment surface.
In a further embodiment of any of the above, at least one BOAS attachment surface includes a pair BOAS attachment surfaces each located adjacent an opposing circumferential side of the attachment body.
In a further embodiment of any of the above, each of the pair of BOAS attachment surfaces define an arced surface.
In a further embodiment of any of the above, the arced surface includes a varying radius of curvature in an axial direction.
In a further embodiment of any of the above, the arced surface includes a constant radius of curvature in the axial direction.
In a further embodiment of any of the above, at least one post includes a pair of posts each having the BOAS guide surface facing a circumferential side of the attachment body.
In a further embodiment of any of the above, at least one aft hook includes a pair of aft hooks each including an anti-rotation tab.
In a further embodiment of any of the above, at least one post includes a pair of posts each having the BOAS guide surface facing a circumferential side of the attachment body.
In another exemplary embodiment, a seal assembly includes at least one blade outer air seal (BOAS) which includes a base portion that extends between a leading edge and a trailing edge. A forward wall and an aft wall extend radially outward from the base portion to a radially outer portion. The radially outer portion is spaced from the base portion and at least partially defines a passage with the forward wall, aft wall, and base portion. At least one attachment body is located at least partially within the passage.
In a further embodiment of any of the above, the attachment body includes a radially outer surface that has at least one post with a BOAS guide surface.
In a further embodiment of any of the above, the radially outer surface includes a BOAS attachment surface in contact with at least one of the blade outer air seals.
In a further embodiment of any of the above, the radially outer surface includes a pair of BOAS attachment surfaces each in contact with a corresponding one of a first BOAS and a second BOAS.
In a further embodiment of any of the above, each of the pair of BOAS attachment surfaces define an arced surface.
In a further embodiment of any of the above, at least one post includes a pair of posts each having the BOAS guide surface facing a circumferential side of the attachment body.
In a further embodiment of any of the above, the attachment body includes a pair of aft hooks each including an anti-rotation tab.
In another exemplary embodiment, a method of assembling a blade outer air seal assembly comprising the steps of engaging a first blade outer air seal (BOAS) with a first attachment surface on a first attachment body. A second BOAS is engaged with a second attachment surface on the first attachment body. The attachment body prevents rotation relative to the first BOAS with a first post and the second BOAS with a second post.
In a further embodiment of any of the above, the attachment body includes a radially outer surface and the first post and the second post are located on the radially outer surface, the first post includes a first BOAS guide surface and the second post includes a second BOAS guide surface.
In a further embodiment of any of the above, the first attachment surface and the second attachment surface each define an arced surface.
In a further embodiment of any of the above, anti-rotating the attachment body relative to an engine static structure with at least one tab that extends from an aft hook on the attachment body.
The exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.
The low speed spool 30 generally includes an inner shaft 40 that interconnects, a first (or low) pressure compressor 44 and a first (or low) pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive a fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a second (or high) pressure compressor 52 and a second (or high) pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 may be arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.
The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, compressor section 24, combustor section 26, turbine section 28, and fan drive gear system 48 may be varied. For example, gear system 48 may be located aft of the low pressure compressor, or aft of the combustor section 26 or even aft of turbine section 28, and fan 42 may be positioned forward or aft of the location of gear system 48.
The engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10), the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about five 5:1. Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3:1 and less than about 5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet (10,668 meters). The flight condition of 0.8 Mach and 35,000 ft (10,668 meters), with the engine at its best fuel consumption—also known as “bucket cruise Thrust Specific Fuel Consumption (‘TSFC’)”—is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. “Low fan pressure ratio” is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane (“FEGV”) system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. “Low corrected fan tip speed” is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram ° R)/(518.7° R)]0.5. The “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second (350.5 meters/second).
The first rotor assembly 60 includes a plurality of first rotor blades 62 circumferentially spaced around a first disk 64 to form an array. Each of the plurality of first rotor blades 62 include a first root portion 72, a first platform 76, and a first airfoil 80. Each of the first root portions 72 is received within a respective first rim 66 of the first disk 64. The first airfoil 80 extends radially outward toward a blade outer air seal (BOAS) 82. The BOAS 82 is attached to the engine static structure 36 by an attachment body 84 engaging retention hooks 86 on the engine static structure 36. In the illustrated example, the attachment body 84 is a separate structure from the BOAS 82 and the engine static structure 36 shown in
The plurality of first rotor blades 62 are disposed in the core flow path C that is pressurized in the compressor section 24 then heated to a working temperature in the combustor section 26. The first platform 76 separates a gas path side inclusive of the first airfoils 80 and a non-gas path side inclusive of the first root portion 72.
A plurality of vanes 90 are located axially upstream of the plurality of first rotor blades 62. Each of the plurality of vanes 90 includes at least one airfoil 92 that extends between a respective vane inner platform 94 and a vane outer platform 96. In another example, each of the array of vanes 90 include at least two airfoils 92 forming a vane double.
As shown in
In the illustrated example, circumferentially outward of the outer wall 106, the forward wall 102 extends a distance D1 from a radially inner edge of the BOAS 82 and the aft wall 104 extends a distance D2 from the radially inner edge of the BOAS 82 with the distance D2 being greater than the distance D1. By having the distance D1 being less than the distance D2, the BOAS 82 can be assembled into a ring (see
The forward wall 102, the aft wall 104, the outer wall 106, and the base portion 108 of the BOAS 82 define a passage 110 for accepting the attachment body 84. A radially inner side of the base portion 108 at least partially defines the core flow path C and is located adjacent a tip of the first airfoil 80 (See
The radially outer surface 118 includes a perimeter portion 118A that surrounds a recessed portion 118B. The recessed portion 118B includes a wall 119 that surrounds the recessed portion 118B and connects the recessed portion 118B to the perimeter portion 118A. The perimeter portion 118A includes a BOAS attachment surface 121 adjacent each of the circumferential sides 120 on circumferential end portions of the attachment body 84. Each of the BOAS attachment surfaces 121 are located adjacent or in contact with one of the BOAS 82 as shown in
A forward hook 122 extends from the perimeter portion 118A of the radially outer surface 118 of the attachment body 84 adjacent the leading edge 112. The forward hook 122 includes a radially outward extending portion 122A and an axially forward extending portion 122B. Although only a single forward hook 122 is shown in the illustrated example of
At least one aft hook 124 also extends from the perimeter portion 118A of the radially outer surface 118 and includes a portion extending radially outward 124A and a portion 124B extending axially forward and aft of the portion extending radially outward. The portion 124B on each of the aft hooks 124 includes a tab 125 that extends axially forward. The tabs 125 engage the retention hooks 86 or the engine static structure 36 to provide an anti-rotation function to prevent or reduce the attachment body 84 from rotating relative to the retention hooks 86/engine static structure 36 (See
A pair of posts 126 also extend from the radially outer surface 118. The pair of posts 126 engage the BOAS 82 to prevent the BOAS 82 from rotating relative to the attachment body 84. The pair of posts each include a BOAS guide surface 126A. In the illustrated example, the BOAS guide surface 126A contacts the BOAS 81 as shown in
As shown in the cross-sectional view in
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. The scope of legal protection given to this disclosure can only be determined by studying the following claims.
This disclosure is a division of U.S. patent application Ser. No. 16/019,972 filed Jun. 27, 2018.
Number | Name | Date | Kind |
---|---|---|---|
8668454 | Wiebe | Mar 2014 | B2 |
8905709 | Dziech et al. | Dec 2014 | B2 |
9169849 | Ward | Oct 2015 | B2 |
9932901 | Sener | Apr 2018 | B2 |
10041369 | Blaney | Aug 2018 | B2 |
10094234 | O'Leary | Oct 2018 | B2 |
10196918 | McCaffrey | Feb 2019 | B2 |
10378387 | Baldiga | Aug 2019 | B2 |
20130156556 | Franks et al. | Jun 2013 | A1 |
20150337673 | McCafffrey | Nov 2015 | A1 |
20160097303 | Baldiga et al. | Apr 2016 | A1 |
20160194974 | Blaney | Jul 2016 | A1 |
20170350268 | McCaffrey | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
3115560 | Jan 2017 | EP |
3255252 | Dec 2017 | EP |
2014133483 | Sep 2014 | WO |
2017103411 | Jun 2017 | WO |
Entry |
---|
The Extended European Search Report for EP Application No. 19182958.9, dated Nov. 13, 2019. |
Number | Date | Country | |
---|---|---|---|
20220049628 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16019972 | Jun 2018 | US |
Child | 17329510 | US |