This application relates to a method of assembling a gas turbine engine, wherein both a compressor rotors and the turbine rotors are assembled using a tie shaft connection.
Gas turbine engines are known, and typically include a compressor, which compresses air and delivers it downstream into a combustion section. The air is mixed with fuel in the combustion section and combusted. Products of this combustion pass downstream over turbine rotors, driving the turbine rotors to rotate.
Typically, the compressor section is provided with a plurality of rotor serial stages, or rotor sections. Traditionally, these stages were joined sequentially one to another into an inseparable assembly by welding or separable assembly by bolting using bolt flanges, or other structure to receive the attachment bolts.
More recently, it has been proposed to eliminate the welded or bolted joints with a single coupling which applies an axial force through the compressor rotors stack to hold them together and create the friction necessary to transmit torque.
A gas turbine engine has a compressor section carrying a plurality of compressor rotors and a turbine section carrying a plurality of turbine rotors. The compressor rotors and the turbine rotors are constrained to rotate together with a tie shaft. An upstream hub provides an upstream abutment face for the compressor rotors stack. A downstream hub bounds the upstream end of the compressor rotor and abuts the compressor rotor stack against the upstream hub. The downstream hub has a rearwardly extending arm which provides a stop for the turbine rotors. An abutment member is tightened on the tie shaft to force the turbine rotors against the downstream hub to axially retain the turbine rotors.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
A downstream hub 30 is positioned at a downstream side of the compressor stack, and contacting a downstream-most compressor rotor 15. The stack of compressor rotors 38, 15 is sandwiched between the downstream hub 30 and upstream hub 34, and secured by a lock nut 32. Downstream hub 30 abuts the stack of turbine rotors 25, and holds them against a pair of lock nuts 28 and 101. Lock Nut 101 biases a plurality of seals and bearings 102 against the turbine rotors. All three lock nuts 32, 28 and 101 are threadably engaged to the same tie shaft.
As shown in
A lock washer 94 is also utilized for anti-rotation locking of nut 32.
As shown in
Finally, as shown in
This three-step arrangement ensures that the compressor and turbine sections are reliably held together, will be capable to resist the forces to be encountered during use and transmit the necessary torque. All these functions are accomplished within a minimal axial envelope and with the lowest locking hardware count.
Although embodiment of this invention have been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.