This specification is based upon and claims the benefit of priority from UK Patent Application Number 1702383.9 filed on 14 Feb. 2017, the entire contents of which are incorporated herein by reference.
This disclosure relates to a fan blade for a gas turbine engine, a fan stage comprising at least one such fan blade, and a gas turbine engine comprising such a fan stage.
Modern gas turbine aero-engines typically comprise a fan, which compresses the incoming air and directs at least a portion of that air along a bypass duct, with the remainder of the air flowing through the engine core. The fan must be able to operate in a range of conditions, for example without stalling.
Modern large gas turbine engines are being designed to have lower specific thrust and higher fan tip loading than their predecessors. This may be achieved by driving the fan via a gearbox in order to reduce the rotational speed of the fan. Lower specific thrust and/or lower rotational speed and/or higher tip loading may be beneficial from an efficiency perspective, but may present significant operability challenges.
For example, as the cruise and sea level working lines separate at lower pressure ratios, the challenge to have sufficient stall (and flutter) margins relative to the sea level static (SLS) working line, and acceptable cruise working line efficiency becomes more difficult.
Accordingly, the design of modern turbofan gas turbine engines tends to decrease their operability range.
Accordingly, it would be desirable to be able to reduce increase the operability range of a gas turbine engine, for example to decrease its susceptibility to stall.
According to an aspect, there is provided a fan stage for a gas turbine engine, the fan stage defining axial, radial and circumferential directions, fan stage comprising a plurality of fan blades extending from a hub. Each fan blade comprises an aerofoil portion has a leading edge extending from a root to a tip, the radial distance between the leading edge at the root and the leading edge at the tip defining a blade span. For any two points on the leading edge of a fan blade that are in the radially outer 40% of the blade span and are radially separated by at least 5% of the blade span, the radially outer of the two points is axially forward of the radially inner point. The radius of the leading edge of a given fan blade at the hub divided by the radius of the leading edge of the fan blade at the tip may be less than or equal to 0.3. The radius of the leading edge of a given fan blade at the hub divided by the radius of the leading edge of the fan blade at the tip may be referred to as the hub to tip ratio, either of the fan blade or the fan stage.
The term “axially forward” may mean the same axial direction as the axial component of the direction from the trailing edge of the blade to the leading edge of the blade. The fan stage may rotate about the axial direction in use. The term “fan stage” may refer only to rotating components, for example comprising the hub and blades. Alternatively, the term “fan stage” may also comprise other components, including non-rotating components such as guide vanes immediately downstream of the fan blades.
Where reference is made to the axial, radial and circumferential directions, the skilled person will readily understand this to mean the conventional directions when the fan blade is assembled as part of a fan stage or is provided in a gas turbine engine. Viewing the blade along a circumferential direction may mean viewing the blade in side profile and/or in the meridional plane and/or projected onto a plane defined by the axial and radial directions.
Arrangements such as those described and/or claimed herein may reduce the radial pressure gradient (for example in the radially outer half and/or towards the tip) of the aerofoil during operation, for example on high working lines. This may provide a greater operability range and/or reduce the tendency of the blade to stall.
Optionally, for any two points on the leading edge of the fan blade that are radially closer to the tip than to the root and are radially separated by at least 5% of the blade span, the radially outer of the two points may be axially forward of the radially inner point.
Optionally, for any two points on the leading edge of the fan blade that are in the radially outer 40% of the blade span and have a difference in radius of at least 2% of the blade span, the radially outer of the two points may be axially forward of the radially inner point.
Optionally, for any two points on the leading edge of the fan blade that are radially closer to the tip than to the root and have a difference in radius of at least 2% of the blade span, the radially outer of the two points may be axially forward of the radially inner point.
The hub may be, or may comprise, a fan disc and/or may be driven by a shaft. The shaft itself may be driven by a turbine of a gas turbine engine. As used herein, in the term “hub to tip ratio”, the hub may refer to the part of the hub that is facing outwards, so as to form the gas-washed surface in use, in accordance with conventional use of the term.
In some arrangements, the radius of the leading edge of a given fan blade at the hub divided by the radius of the leading edge of the fan blade at the tip may be less than or equal to 0.37, for example less than or equal to 0.35, for example less than or equal to 0.33, for example less than or equal to 0.32, for example less than or equal to 0.31, for example less than or equal to 0.3, for example less than or equal to 0.29, for example less than or equal to 0.28, for example less than or equal to 0.27, for example less than or equal to 0.26, for example less than or equal to 0.25, for example less than or equal to 0.24, for example less than or equal to 0.23, for example less than or equal to 0.22.
For any two points on the leading edge of a fan blade that are radially closer to the tip than to the root and have a difference in radius of at least 1%, for example at least 2%, for example at least 3%, for example at least 4% of the blade span, the radially outer of the two points may axially forward of the radially inner point.
For any two points on the leading edge of a fan blade that are radially separated by at least 5% of the blade span, the radially outer of the two points may be axially forward of the radially inner point, for example regardless of the absolute radial position of the two points. Thus, in some arrangements, for any two points on the leading edge of a fan blade that are radially closer to the root than to the tip and are radially separated by at least 5% of the blade span, the radially outer of the two points may be axially forward of the radially inner point. In other arrangements, for any two points on the leading edge of a fan blade that are radially closer to the root than to the tip and are radially separated by at least 5% of the blade span, the radially outer of the two points may not be axially forward of the radially inner point, for example it may be axially rearward of or axially aligned with the radially inner point.
When viewed along a circumferential direction, the angle formed between the radial direction and a line drawn between any of the two points on the leading edge referred to herein may be in the range of from −6° and 0°, for example in the range of from −5° and −0.25°, for example −4° and −0.5°, for example −3° and −0.75°, for example −2° and −1°, where a negative angle indicates that the respective line has an axial component that is in the same direction as the axial component of the direction from a trailing edge to the leading edge of the blade.
When viewed along a circumferential direction, the angle (α) formed between the radial direction and a straight line (AC) drawn between the leading edge at the root and at the tip of any given fan blade is in the range of from −6° and −0.2°, for example in the range of from −5° and −0.25°, for example −4° and −0.5°, for example −3° and −0.75°, for example −2° and −1°, where a negative angle indicates that the respective line has an axial component that is in the same direction as the axial component of the direction from a trailing edge to the leading edge of the blade.
When viewed along a circumferential direction, the maximum perpendicular distance between any point on the leading edge and a straight line drawn between the leading edge at the root and at the tip may be 5% of blade span, for example 4%, 3%, 2%, 1%, 0.5% or 0.1% of the blade span.
The fan blade may comprise a platform. The fan blade may comprise a root portion. The root portion may extend between the platform and the root of the aerofoil portion. Alternatively, the aerofoil portion may extend directly from the platform, with no intermediate root portion, such that the root of the aerofoil foil portion is the root of the fan blade. A radially outer (gas washed) surface of the platform may correspond to the radially outer (gas washed) part of the hub.
Where the fan blade comprises a root portion, the radial extent of the root portion may be no more than 15%, for example no more than 10%, 7%, 5%, 3%, 2% or 1%, of the span of the aerofoil portion, for example.
The fan blade may comprise a tip portion that extends at least radially away from the tip of the aerofoil portion. Alternatively, the fan blade may comprise no tip portion, such that the tip of the aerofoil portion is also the tip of the fan blade.
Where the fan blade comprises a tip portion, the radial extent of the tip portion may be no more than 15%, for example no more than 10%, 7%, 5%, 3%, 2% or 1%, of the span of the aerofoil portion, for example.
A stacking axis of the aerofoil portion may be defined by a line joining the centroids of all of the aerofoil segments that are stacked to form the aerofoil portion. When viewed along a circumferential direction, the stacking axis may have a forward lean. For example, the angle formed between the radial direction and a straight line drawn between the stacking axis at the root and at the tip may be in the range of from −40° and 0°, for example −30° and −1°, for example −25° and −2°, for example −20° and −3°, for example −15° and −5°, for example −10° and −6°, where a negative angle indicates that the respective line has an axial component that is in the same direction as the axial component of the direction from a trailing edge to the leading edge of the blade. By way of further example, optionally the stacking axis may have a forward (negative) lean in the radially outer half of the aerofoil portion, for example only in the radially outer half of the aerofoil portion.
The aerofoil portion may have a trailing edge extending from a root to a tip. When viewed along a circumferential direction, the trailing edge may have a forward lean. For example, the angle formed between the radial direction and a straight line drawn between the trailing edge at the root and at the tip may be in the range of from −40° and 0°, for example −30° and −1°, for example −25° and −2.5°, for example −20° and −5°, for example −15° and −7.5°, for example around −10°, where a negative angle indicates that the respective line has an axial component that is in the same direction as the axial component of the direction from a trailing edge to the leading edge of the blade.
The trailing edge may be shaped such that the forward (negative) lean angle over a radially outer half of the trailing edge is greater, for example significantly greater, than the forward (negative) lean angle over a radially inner half of the trailing edge. For example, the forward (negative) lean angle over a radially outer half of the trailing may be at least 1.5 times, for example at least twice, for example at least 3, 4, 5, 6, 7, 8, 9 or 10 times the forward (negative) lean angle over a radially inner half of the trailing edge. In some arrangements, the trailing edge may be radial (including substantially radial) over a radially inner portion of the blade (or aerofoil portion), for example over a radially inner 10%, 20%, 30%, 40% or around 50%.
In any aspect or example of the present disclosure, the magnitude of the angle formed between the radial direction and a straight line drawn between the trailing edge at the root and at the tip may be greater than the magnitude of the angle formed between the radial direction and a straight line drawn between the leading edge at the root and at the tip. For example, the angle formed between the radial direction and a straight line drawn between the trailing edge at the root and at the tip may have a higher negative value than that of the of the angle formed between the radial direction and a straight line drawn between the leading edge at the root and at the tip. The angle formed between the radial direction and a straight line drawn between the trailing edge at the root and at the tip may be negative. The angle formed between the radial direction and a straight line drawn between the leading edge at the root and at the tip may be negative.
Any fan blade and/or aerofoil portion described and/or claimed herein may be manufactured from any suitable material or combination of materials. For example at least a part of the fan blade and/or aerofoil may be manufactured at least in part from a composite, for example a metal matrix composite and/or an organic matrix composite, such as carbon fibre, and/or from a metal, such as a titanium based metal or an aluminium based material (such as an Aluminium-Lithium alloy) or a steel based material.
The fan blades may be attached to the hub in any desired manner. For example, each fan blade may comprise a fixture which may engage a corresponding slot in the hub (or disc). Purely by way of example, such a fixture may be in the form of a dovetail that may slot into and/or engage a corresponding slot in the hub/disc in order to fix the fan blade to the hub/disc.
By way of further example, the fan blades maybe formed integrally with a hub. Such an arrangement may be referred to as a blisk or a bling. Any suitable method may be used to manufacture such a blisk or bling. For example, at least a part of the fan blades may be machined from a block and/or at least part of the fan blades may be attached to the hub/disc by welding, such as linear friction welding.
By way of further example, the fan blades may be attached to a hub in a manner that allows their pitch to be varied.
According to an aspect, there is provided a gas turbine engine comprising at least one fan blade as described and/or claimed herein and/or a fan stage as described and/or claimed herein.
Such a gas turbine engine (which may, of course, be a turbofan gas turbine engine) may have a specific thrust of less than 15 lbf/lb/s (or approximately 150 N/Kg/s), for example less than 12 lbf/lb/s (or approximately 120 N/Kg/s), for example less than 10 lbf/lb/s (or approximately 110 N/Kg/s or 100 N/Kg/s), for example less than 9 lbf/lb/s (or approximately 90 N/Kg/s), for example less than 8.5 lbf/lb/s (or approximately 85 N/Kg/s), for example less than 8 lbf/lb/s (or approximately 80 N/Kg/s).
Any gas turbine engine described and/or claimed herein may have a fan tip loading (dH/Utip2) at cruise conditions of greater than 0.3, for example in the range of from 0.3 to 0.37, for example 0.32 to 0.36, for example on the order of 0.35 (all units being JKg−1K−1/(ms−1)2), where dH is the enthalpy rise across the fan (for example the 1-D average enthalpy rise of the flow across the fan at cruise conditions), and Utip is the velocity of the tip, for example at cruise conditions, which may be calculated as the rotational speed multiplied by the tip radius at the leading edge. Cruise may be defined as the phase between the initial ascent and final descent of an aircraft to which the engine may be attached. As used herein, cruise may mean, for example, mid-cruise, i.e. mid-point (for example in terms of time and/or fuel burn) of a flight (or at least of the cruise phase of a flight).
The radius of the fan may be measured between the engine centreline and the tip of a fan blade at its leading edge. The fan diameter (which may simply be twice the radius of the fan) may be greater than 250 cm, for example greater than 260 cm, 270 cm, 280 cm, 290 cm, 300 cm, 310 cm, 320 cm, 330 cm, 340 cm or 350 cm.
Gas turbine engines in accordance with the present disclosure may have any desired bypass ratio, where the bypass ratio is defined as the ratio of the mass flow rate of the flow through the bypass duct to the mass flow rate of the flow through the core at cruise conditions. In some arrangements the bypass ratio may be greater than 10, for example greater than 11, for example greater than 11.5, for example greater than 12, for example greater than 13, for example greater than 14, for example greater than 15. The bypass duct may be substantially annular. The bypass duct may be radially outside the core engine. The radially outer surface of the bypass duct may be defined by a nacelle and/or a fan case.
A gas turbine engine as described and/or claimed herein may have any desired maximum thrust. Purely by way of non-limitative example, a gas turbine as described and/or claimed herein may be capable of producing at least 170 kN of thrust, for example at least 180 kN, for example at least 190 kN, for example at least 200 kN, for example at least 250 kN, for example at least 300 kN, for example at least 350 kN, for example at least 400 kN. The thrust referred to above may be at standard atmospheric conditions.
Such a gas turbine engine may be of any suitable form. For example, the gas turbine engine may be an aero gas turbine engine for use on aircraft. Such an engine may be a geared turbofan gas turbine engine, in which the fan stage is driven from a turbine via a gearbox, in order to reduce (or increase) the rotational speed of the fan stage compared with the driving turbine stage(s).
The arrangements of the present disclosure may be particularly effective in addressing any operability issues presented by the use of such lower speed fans, such as those driven via a gearbox.
The input to such a gearbox may be directly from a core shaft that connects a turbine to a compressor, or indirectly from the core shaft, for example via a spur shaft and/or gear. The core shaft may rigidly connect the turbine and the compressor, such that the turbine and compressor rotate at the same speed (with the fan rotating at a lower speed).
Any number of fan stages may be provided to an engine. For example, a gas turbine engine may have a single fan stage, such that the next downstream rotor stage after the fan is a compressor rotor stage, for example a compressor rotor stage in the core of the engine.
The skilled person will appreciate that except where mutually exclusive, a feature described in relation to any one of the above aspects may be applied to any other aspect. Furthermore, except where mutually exclusive, any feature described herein may be applied to any aspect and/or combined with any other feature described herein.
Embodiments will now be described by way of example only, with reference to the Figures, in which:
With reference to
The gas turbine engine 10 works in the conventional manner so that air entering the intake 12 is accelerated by the fan 13 to produce two air flows: a first air flow into the intermediate pressure compressor 14 and a second air flow which passes through a bypass duct 22 to provide propulsive thrust. The intermediate pressure compressor 14 compresses the air flow directed into it before delivering that air to the high pressure compressor 15 where further compression takes place.
The compressed air exhausted from the high-pressure compressor 15 is directed into the combustion equipment 16 where it is mixed with fuel and the mixture combusted. The resultant hot combustion products then expand through, and thereby drive the high, intermediate and low-pressure turbines 17, 18, 19 before being exhausted through the nozzle 20 to provide additional propulsive thrust. The high 17, intermediate 18 and low 19 pressure turbines drive respectively the high pressure compressor 15, intermediate pressure compressor 14 and fan 13, each by suitable interconnecting shaft.
The gas turbine engine 10 and/or the fan stage 13 and/or the fan blades 100 of the fan stage 13 shown in
Any gas turbine engine in accordance with the present disclosure (such as the gas turbine engine 10 of
The present disclosure may relate to any suitable gas turbine engine. For example, other gas turbine engines to which the present disclosure may be applied may have related or alternative configurations. By way of example such engines may have an alternative number of interconnecting shafts (e.g. two) and/or an alternative number of compressors and/or turbines. Further the engine may comprise a gearbox provided in the drive train from a turbine to a compressor and/or fan. The gas turbine engine shown in
The geometry of the gas turbine engine 10, and components thereof, is defined by a conventional axis system, comprising an axial direction 30 (which is aligned with the rotational axis 11), a radial direction 40, and a circumferential direction 50 (shown perpendicular to the page in the
The fan stage 13 comprises a plurality of fan blades 100 extending from a hub 200. The fan blades 100 may be defined with respect to the axial direction 30, radial direction 40, and circumferential direction 50 shown in
In general, the fan stage 13 (which may be referred to simply as the fan 13) has a hub to tip ratio, which may be defined as the radius of the leading edge of the fan blades 100 at the point where they extend away from the hub 200 (labelled rhub in
Various features of an exemplary fan blade 100 will now be described with reference to
For any two points P1, P2 on the leading edge that are in the region 300 that is the radially outer 40% of the blade span (i.e. radially outboard of the point F shown in
For points P3, P4 that are on the leading edge that are in the region 310 that is the radially inner 60% of the blade span (i.e. radially inside of the point F shown in
Optionally, the global slope ∝ of the aerofoil portion 110 of fan blades 100 as described and/or claimed herein, such as that shown by way of example in
Optionally, the local slope ∝ (P1, P2), ∝ (P3, P4) of the aerofoil portion 110 of fan blades 100 as described and/or claimed herein, such as that shown by way of example in
The relationship between ‘E’ and ‘H’ as defined in the table above is seen most easily in
The trailing edge 130 of the aerofoil portion 110 may also define a global slope β. The global slope β of the trailing edge 130 of fan blades 100 may be in the range of from −40° and 0°, for example −30° and −1°, for example −25° and −2.5°, for example −20° and −5°, for example −15° and −7.5°, for example around −10°. In this regard, the global slope β of the trailing edge 130 may represent the angle between the radial direction and a straight line I drawn between a point B on the trailing edge 130 at the root 140 and a point D on the trailing edge 130 at the tip 150.
The fan blade 100 comprises a platform 160. The aerofoil portion 110 may extend directly from the platform 160, as in the
Also as shown by way of example in
The fan blade 100 may be attached to the hub 200 in any desired manner. For example, the fan blade 100 may comprise a fixture 190 such as that shown by way of example in
Alternatively, the fan blade 100 and the hub 200 may be formed as a unitary part, with no mechanical and/or releasable connections, so as to form a unitary fan stage 13. Such a unitary fan stage 13 may be referred to as a “blisk”. Such a unitary fan stage 13 may be manufactured in any suitable manner, for example by machining and/or by linear friction welding the fan blades 100 to the hub 200, or at least linear friction welding the aerofoil portions 110 to a hub 200 that includes radially inner stub portions of the fan blades 100.
It will be understood that the invention is not limited to the embodiments above-described and various modifications and improvements can be made without departing from the concepts described herein. Except where mutually exclusive, any of the features may be employed separately or in combination with any other features and the disclosure extends to and includes all combinations and sub-combinations of one or more features described herein.
Number | Date | Country | Kind |
---|---|---|---|
1702383.9 | Feb 2017 | GB | national |