A gas turbine engine typically includes a fan section, a compressor section, a combustor section, and a turbine section. Air entering the compressor section is compressed and delivered into the combustor section where it is mixed with fuel and ignited to generate a high-speed exhaust gas flow. The high-speed exhaust gas flow expands through the turbine section to drive the compressor and the fan section. The compressor section typically includes low and high pressure compressors, and the turbine section includes low and high pressure turbines.
A gas turbine engine also includes bearings that support rotatable shafts. The bearings require lubricant. Various seal assemblies near the rotating shafts contain oil within bearing compartments. Specifically, during operation of the engine, non-rotating seal faces contact rotating seal plates to maintain bearing compartment pressures and keep lubricating oil inside the various bearing compartments.
A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a compressor section, a combustor section, a turbine section, and at least one rotatable shaft. The engine further includes a seal assembly including a seal plate mounted for rotation with the rotatable shaft and a face seal in contact with the seal plate at a contact area. The seal assembly further includes an abradable coating adjacent the contact area. The abradable coating includes magnetic particles embedded in a polymer material.
In a further non-limiting embodiment of the foregoing gas turbine engine, the abradable coating is provided by a polymer matrix composite material.
In a further non-limiting embodiment of any of the foregoing gas turbine engines, the polymer material includes epoxy.
In a further non-limiting embodiment of any of the foregoing gas turbine engines, the magnetic particles are metallic particles.
In a further non-limiting embodiment of any of the foregoing gas turbine engines, the metallic particles are particles of iron (Fe).
In a further non-limiting embodiment of any of the foregoing gas turbine engines, the metallic particles exhibit a diameter within a range of 170 to 300 microns.
In a further non-limiting embodiment of any of the foregoing gas turbine engines, the polymer material includes epoxy-diane resin and a polyethylenepolyamine curing agent.
In a further non-limiting embodiment of any of the foregoing gas turbine engines, the abradable coating is positioned on the seal plate such that, in normal operating conditions, the face seal and a seal carrier supporting the face seal do not contact the abradable coating.
In a further non-limiting embodiment of any of the foregoing gas turbine engines, wherein the abradable coating is positioned such that, in a worn seal condition, one or both of the face seal and a seal carrier supporting the face seal contact the abradable coating and release at least some magnetic particles of the abradable coating.
In a further non-limiting embodiment of any of the foregoing gas turbine engines, the abradable coating is a sacrificial coating.
In a further non-limiting embodiment of any of the foregoing gas turbine engines, the abradable coating is radially outward of the contact area.
In a further non-limiting embodiment of any of the foregoing gas turbine engines, the engine includes a bearing assembly mounted relative to the rotatable shaft, and the seal assembly is adjacent the bearing assembly.
In a further non-limiting embodiment of any of the foregoing gas turbine engines, the face seal is made of a carbon material.
A bearing compartment for a gas turbine engine according to another exemplary aspect of the present disclosure includes, among other things, a bearing assembly, and a seal assembly including a seal plate and a face seal in contact with the seal plate at a contact area. The seal assembly includes an abradable coating adjacent the contact area, and the abradable coating includes magnetic particles embedded in a polymer material.
In a further non-limiting embodiment of the foregoing bearing compartment, the polymer material includes epoxy.
In a further non-limiting embodiment of any of the foregoing bearing compartments, the magnetic particles are metallic particles.
In a further non-limiting embodiment of any of the foregoing bearing compartments, the metallic particles are particles of iron (Fe), and the polymer material includes epoxy-diane resin and a polyethylenepolyamine curing agent.
In a further non-limiting embodiment of any of the foregoing bearing compartments, the metallic particles exhibit a diameter within a range of 170 to 300 microns.
In a further non-limiting embodiment of any of the foregoing bearing compartments, the abradable coating is positioned on the seal plate such that, in normal operating conditions, the face seal and a seal carrier supporting the face seal do not contact the abradable coating. Further, the abradable coating is positioned such that, in a worn seal condition, one or both of the face seal and the seal carrier contact the abradable coating and release at least some particles of the abradable coating.
In a further non-limiting embodiment of any of the foregoing bearing compartments, the abradable coating is a sacrificial coating, and the abradable coating is positioned, in normal operating conditions, radially outward of the contact area.
The embodiments, examples and alternatives of the preceding paragraphs, the claims, or the following description and drawings, including any of their various aspects or respective individual features, may be taken independently or in any combination. Features described in connection with one embodiment are applicable to all embodiments, unless such features are incompatible.
The exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.
The low speed spool 30 generally includes an inner shaft 40 that interconnects, a first (or low) pressure compressor 44 and a first (or low) pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive a fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a second (or high) pressure compressor 52 and a second (or high) pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 may be arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.
The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, compressor section 24, combustor section 26, turbine section 28, and fan drive gear system 48 may be varied. For example, gear system 48 may be located aft of the low pressure compressor, or aft of the combustor section 26 or even aft of turbine section 28, and fan 42 may be positioned forward or aft of the location of gear system 48.
The engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10), the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about five 5:1. Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3:1 and less than about 5:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans, low bypass engines, and multi-stage fan engines.
The bearing compartment 60 is representative of any bearing compartment within the engine 20. Further, the shaft 72 is representative of any shaft within the engine 20, such as the inner shaft 40 or the outer shaft 50. This disclosure is not limited to bearing compartments at any particular engine location. Further, this disclosure applies outside the context of bearing compartments.
The seal assembly 64 includes a face seal 74 and a seal plate 76. In this example, the face seal 74 is mounted to a static structure, namely a seal carrier 78, and therefore does not rotate during operation of the engine 20. The face seal 74 may be made of a carbon (C) material, however other materials come within the scope of this disclosure.
The face seal 74 is biased against, and in direct contact with, the seal plate 76. In particular, either the seal carrier 78 itself is configured to bias the face seal 74 axially toward the seal plate 76, or another structure biases the seal carrier 78, and in turn the face seal 74, axially toward the seal plate 76.
The seal plate 76 is configured to rotate about the engine central longitudinal axis A with the shaft 72. The contact area, namely the region where the face seal 74 directly contacts the seal plate 76, between the face seal 74 and the seal plate 76 ensures that cooling fluid, namely lubricant such as oil, remains within the bearing compartment 60 during operation of the gas turbine engine 20. Over time, the face seal 74 and/or the seal plate 76 may wear. This disclosure relates to detection of such wear. In particular, this disclosure relates to an abradable coating that permits detection of undue wear at the interface between the face seal 74 and/or the seal plate 76.
Radially outward of the hard coating 82, the seal plate 76 includes an abradable coating 90. The abradable coating 90, in this example, is applied to an axial end face 92 of the seal plate 76. The axial end face 92 faces toward the face seal 74 and the seal carrier 78. The axial end face 92 is co-planar with, and axially aligned with, a surface of the seal plate 76 containing the hard coating 82 and contacting the nose 84. In this example, the abradable coating 90 projects axially from the axial end face 92 in a direction toward the face seal 74 and the seal carrier 78. The abradable coating 90 is arranged on the seal plate 76 radially outward of the projection 86 such that the face seal 74 does not contact the abradable coating 90 during normal operating conditions. In other words, the contact area 80 is radially spaced-apart from, and in particular radially inward of, the abradable coating 90.
While in
In
The abradable coating 90, in this disclosure, includes magnetic particles embedded in a polymer material. In particular, the abradable coating 90 is provided by a polymer matrix composite (PMC) material. In this disclosure, a polymer matrix composite (PMC) material refers to a material which includes a polymer matrix and reinforcing material. The polymer matrix is a continuous phase, and the reinforcing material is the discrete phase. The polymer material acts as a bonding agent for the reinforcing material. In a particular example, the polymer matrix is provided by epoxy, and in a specific example includes epoxy resin. Specifically, an example polymer material includes epoxy-diane resin and a polyethylenepolyamine curing agent. The reinforcing materials are magnetic particles, and in a particular example the reinforcing materials are iron (Fe) particles. In other examples, the reinforcing materials are iron oxides (Ferric oxide Fe2O3 and magnetite Fe3O4), actinide ferromagnets, Alnico alloy (an iron alloy with aluminum, nickel and cobalt), Yttrium iron garnet (Y3Fe2(FeO4)3 or Y3Fe5O12). The iron (Fe) particles, in an example, exhibit a diameter within a range of 170 and 300 microns. This particle size permits detection by an on-line detection monitor, or any other type of sensor configured to detect magnetic particles in lubricant, such that the worn seal condition can be readily detected. The abradable coating 90 may also be porous in order to increase the ease of releasing the freed particles 94, for example. The abradable coating 90 may be applied to the seal plate 76, for example, via known techniques including thermal spraying, cold spraying, and/or other known techniques. Another example material for the abradable coating 90 includes silicone rubber-based polymer abradables containing magnetic particles. The abradable coating 90 described herein is particularly suited for early detection of a worn seal condition, especially when compared to abradable coatings that do not contain the above-described polymer material, such as abradable coatings that contain metallic particles which are not embedded in polymer.
It should be understood that terms such as “axial” and “radial” are used above with reference to the normal operational attitude of the engine 20. Further, these terms have been used herein for purposes of explanation, and should not be considered otherwise limiting. Terms such as “generally,” “substantially,” and “about” are not intended to be boundaryless terms, and should be interpreted consistent with the way one skilled in the art would interpret those terms. Additionally, while many components of the engine 20 are shown in cross-section in the figures, it should be understood that certain of these components extend circumferentially around the engine central longitudinal axis A.
Although the different examples have the specific components shown in the illustrations, embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples. In addition, the various figures accompanying this disclosure are not necessarily to scale, and some features may be exaggerated or minimized to show certain details of a particular component or arrangement.
One of ordinary skill in this art would understand that the above-described embodiments are exemplary and non-limiting. That is, modifications of this disclosure would come within the scope of the claims. Accordingly, the following claims should be studied to determine their true scope and content.
Number | Name | Date | Kind |
---|---|---|---|
1872251 | Cowin | Aug 1932 | A |
3068016 | Dega | Dec 1962 | A |
3342563 | Butts | Sep 1967 | A |
3547455 | Daunt | Dec 1970 | A |
4248566 | Chapman | Feb 1981 | A |
4277072 | Forch | Jul 1981 | A |
4402515 | Malott | Sep 1983 | A |
4423097 | Mons | Dec 1983 | A |
4606378 | Meyer | Aug 1986 | A |
5499901 | Rockwood | Mar 1996 | A |
6073358 | Nguyen | Jun 2000 | A |
6113482 | Licata | Sep 2000 | A |
6338578 | Adde | Jan 2002 | B1 |
6443698 | Corattiyil | Sep 2002 | B1 |
7025356 | Cheung | Apr 2006 | B1 |
7998604 | Reynolds | Aug 2011 | B2 |
8794922 | Bart | Aug 2014 | B2 |
10180075 | Andrus et al. | Jan 2019 | B1 |
11060382 | Sherman | Jul 2021 | B2 |
20020192494 | Tzatzov et al. | Dec 2002 | A1 |
20040137259 | Pabla | Jul 2004 | A1 |
20040142196 | Hajmrle | Jul 2004 | A1 |
20060251512 | Singh | Nov 2006 | A1 |
20060267289 | Li | Nov 2006 | A1 |
20070177936 | Servant | Aug 2007 | A1 |
20080056890 | Ivakitch | Mar 2008 | A1 |
20090223052 | Chaudhry et al. | Sep 2009 | A1 |
20090297083 | Raberin | Dec 2009 | A1 |
20100135785 | Just | Jun 2010 | A1 |
20110049809 | Garrison | Mar 2011 | A1 |
20110076151 | Cui et al. | Mar 2011 | A1 |
20110081235 | Shah | Apr 2011 | A1 |
20110121519 | Justak | May 2011 | A1 |
20110293958 | Benkoski | Dec 2011 | A1 |
20130078079 | LaPierre | Mar 2013 | A1 |
20130241153 | Garrison | Sep 2013 | A1 |
20130283757 | Bordne | Oct 2013 | A1 |
20130305684 | Mastro | Nov 2013 | A1 |
20140099188 | Bordne | Apr 2014 | A1 |
20140300058 | Brunet | Oct 2014 | A1 |
20140334913 | Igel | Nov 2014 | A1 |
20150176425 | Caulfield et al. | Jun 2015 | A1 |
20150184531 | Baptista | Jul 2015 | A1 |
20150233255 | Strock | Aug 2015 | A1 |
20150275677 | Cui et al. | Oct 2015 | A1 |
20150308281 | Strock | Oct 2015 | A1 |
20150354081 | Strock | Dec 2015 | A1 |
20150377037 | Salm et al. | Dec 2015 | A1 |
20160003092 | Chamberlain | Jan 2016 | A1 |
20160084168 | Amini | Mar 2016 | A1 |
20160305442 | Strock | Oct 2016 | A1 |
20160312897 | Eastman | Oct 2016 | A1 |
20170248029 | Hafner et al. | Aug 2017 | A1 |
20170314468 | Wotzak | Nov 2017 | A1 |
20170314566 | Strock | Nov 2017 | A1 |
20170314567 | Hansen | Nov 2017 | A1 |
20170314571 | Strock | Nov 2017 | A1 |
20170343111 | Ottow | Nov 2017 | A1 |
20180087669 | Saha | Mar 2018 | A1 |
20180258783 | Kirchhoff | Sep 2018 | A1 |
20180291814 | Anglin | Oct 2018 | A1 |
20180340439 | Vinski | Nov 2018 | A1 |
20180361471 | Stoyanov | Dec 2018 | A1 |
20190040959 | Sommers | Feb 2019 | A1 |
20190093496 | Hardikar | Mar 2019 | A1 |
20190186281 | Stoyanov | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
102017130965 | Jun 2019 | DE |
2401409 | Nov 2004 | GB |
2570027 | Oct 2015 | RU |
2570027 | Dec 2015 | RU |
Number | Date | Country | |
---|---|---|---|
20220018289 A1 | Jan 2022 | US |