The present subject matter relates generally to an inspection tool for gas turbine engine.
A gas turbine engine generally includes a fan and a core arranged in flow communication with one another. Additionally, the core of the gas turbine engine generally includes, in serial flow order, a compressor section, a combustion section, a turbine section, and an exhaust section. In operation, air is provided from the fan to an inlet of the compressor section where one or more axial compressors progressively compress the air until it reaches the combustion section. Fuel is mixed with the compressed air and burned within the combustion section to provide combustion gases. The combustion gases are routed from the combustion section to the turbine section. The flow of combustion gasses through the turbine section drives the turbine section and is then routed through the exhaust section, e.g., to atmosphere.
Periodically, the gas turbine engine is inspected during maintenance intervals to determine an amount of wear on, e.g., the internal components of the gas turbine engine. For example, gas turbine engines typically include one or more inspection holes allowing a technician to view into a core air flowpath of the gas turbine engine. A flexible borescope may be inserted through these inspection holes facilitating such inspection and allowing the technician to take images of the one or more components. However, depending on the technician performing the inspection, the images taken of the components may not be properly documented or cataloged, and further will likely show a skewed angle of the components. Such may make it difficult to keep an eye on any potentially problematic areas of the gas turbine engine across a gas turbine engine's periodic maintenance intervals, especially if different technicians are used for the inspections. Additionally, skewed angle views of the components may make it difficult to identify the component and/or a location on the components being captured in the image.
Accordingly, a tool for performing certain maintenance operations of the gas turbine engine providing benefits despite inexperienced technicians or different technicians during different maintenance intervals would be useful. More specifically, a tool for taking images of the internal components of the gas turbine engine capable of more accurately cataloguing these images would be especially useful.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one exemplary embodiment of the present disclosure, a maintenance tool for a gas turbine engine is provided. The gas turbine engine defines a core air flowpath and a plurality of inspection holes. The maintenance tool includes a rail system having a plurality of rail segments insertable through one or more of the inspection holes of the gas turbine engine for assembly within the core air flowpath. The maintenance tool additionally includes a maintenance head moveable along the plurality of rail segments of the rail system for performing maintenance operations within the core air flowpath.
In another exemplary embodiment of the present disclosure, a gas turbine engine system is provided. The gas turbine engine system includes a gas turbine engine having a compressor section, a combustion section, and a turbine section in serial flow order and together defining at least in part a core air flowpath. The gas turbine engine defines one or more inspection holes. The gas turbine engine system also includes a maintenance tool. The maintenance tool includes a rail system having a plurality of rail segments assembled within the core air flowpath. The maintenance tool also includes a maintenance head positioned within the core air flowpath and moveable along the plurality of rail segments of the rail system for performing maintenance operations within the core air flowpath.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention. As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “forward” and “aft” refer to relative positions within a gas turbine engine, with forward referring to a position closer to an engine inlet and aft referring to a position closer to an engine nozzle or exhaust. The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows.
Referring now to the drawings, wherein identical numerals indicate the same elements throughout the figures,
The exemplary core turbine engine 16 depicted generally includes a substantially tubular outer casing 18 that defines an annular inlet 20. The outer casing 18 encases, in serial flow relationship, a compressor section including a first, booster or low pressure (LP) compressor 22 and a second, high pressure (HP) compressor 24; a combustion section 26; a turbine section including a first, high pressure (HP) turbine 28 and a second, low pressure (LP) turbine 30; and a jet exhaust nozzle section 32. A high pressure (HP) shaft or spool 34 drivingly connects the HP turbine 28 to the HP compressor 24. A low pressure (LP) shaft or spool 36 drivingly connects the LP turbine 30 to the LP compressor 22. The compressor section, combustion section 26, turbine section, and jet exhaust nozzle section 32 together define a core air flowpath 37 through the core turbine engine 16.
Referring still the embodiment of
Referring still to the exemplary embodiment of
During operation of the turbofan engine 10, a volume of air 58 enters the turbofan 10 through an associated inlet 60 of the nacelle 50 and/or fan section 14. As the volume of air 58 passes across the fan blades 40, a first portion of the air 58 as indicated by arrows 62 is directed or routed into the bypass airflow passage 56 and a second portion of the air 58 as indicated by arrow 64 is directed or routed into the LP compressor 22. The ratio between the first portion of air 62 and the second portion of air 64 is commonly known as a bypass ratio. The pressure of the second portion of air 64 is then increased as it is routed through the high pressure (HP) compressor 24 and into the combustion section 26.
Referring still to
The combustion gases 66 are subsequently routed through the jet exhaust nozzle section 32 of the core turbine engine 16 to provide propulsive thrust. Simultaneously, the pressure of the first portion of air 62 is substantially increased as the first portion of air 62 is routed through the bypass airflow passage 56 before it is exhausted from a fan nozzle exhaust section 76 of the turbofan 10, also providing propulsive thrust. The HP turbine 28, the LP turbine 30, and the jet exhaust nozzle section 32 at least partially define a hot gas path 78 for routing the combustion gases 66 through the core turbine engine 16.
It should be appreciated that the exemplary turbofan engine 10 depicted in
Referring now to
As shown, combustion section 26 includes a combustor assembly 100. The combustor assembly 100 generally includes an inner liner 102 extending between an aft end 104 and a forward end 106 generally along the axial direction A, as well as an outer liner 108 also extending between an aft end 110 and a forward end 112 generally along the axial direction A. The inner and outer liners 102, 108 together at least partially define a combustion chamber 114 therebetween. The inner and outer liners 102, 108 are each attached to or formed integrally with an annular dome. More particularly, the annular dome includes an inner dome section 116 attached to, or formed integrally with, the forward end 106 of the inner liner 102 and an outer dome section 118 attached to, or formed integrally with, the forward end 112 of the outer liner 108. Further, the inner and outer dome section 116, 118 may each be formed integrally (or alternatively may be formed of a plurality of components attached in any suitable manner) and may each extend along the circumferential direction C to define an annular shape. It should be appreciated, however, that in other embodiments, the combustor assembly 100 may not include the inner and/or outer dome sections 116, 118; may include separately formed inner and/or outer dome sections 116, 118 attached to the respective inner liner 102 and outer liner 108; or may have any other suitable configuration.
For the embodiment depicted, the inner liner 102 and the outer liner 108 may each formed of a refractory material, such as a ceramic matrix composite (CMC) material, which is a non-metallic material having high temperature capability. However, in other embodiments, one or both of the inner liner 102 and the outer liner 108 may alternatively be formed of any other suitable material, such as a suitable metal material.
Additionally, for the embodiment depicted, the turbofan engine 10 includes an outer casing. More specifically, the turbofan engine 10 includes an outer compressor casing 25, an outer combustor casing 27, and an outer turbine casing 29. The combustor assembly 100 is generally positioned within, and surrounded by, the outer combustor casing 27. Additionally, although not depicted the combustor assembly may be attached to the outer combustor casing, for example, the outer liner 108 of the combustor assembly 100 may be attached to the outer combustor casing 27.
Referring still to
Moreover, it will be appreciated, that the exemplary turbofan engine depicted in
Referring still to
Referring now also to
Notably, in other exemplary embodiments of the present disclosure, the rail system 202 of the exemplary maintenance tool 200 may instead be assembled within the core air flowpath 37 at any other suitable location of the turbofan engine 10. For example, in other exemplary embodiments, the rail system 202 of the exemplary maintenance tool 200 may instead be assembled within, e.g., the compressor section of the turbofan engine 10, or the turbine section of the turbofan engine 10. With such a configuration, the rail system 202 may be inserted through one or more of the inspection holes 132 in the compressor section of the turbofan engine 10 (such as within the HP compressor 24) and/or in the turbine section of the turbofan engine 10 (such as within the HP turbine 28).
Referring now particularly to the embodiment of
As is also depicted, the exemplary maintenance tool 200 further includes a radial clamp 206 attachable to the rail system 202 and extendable through one or more of the plurality of inspection holes 132 of the turbofan engine 10. More specifically, for the embodiment depicted, the maintenance tool 200 includes a plurality of radial clamps 206 attachable to the rail system 202 at locations along a length of the rail system 202 and spaced along the circumferential direction C of the turbofan engine 10. For example, as is depicted in
Referring now also to
The radial clamp 206 depicted further includes a shaft 212 extending generally along the radial direction R into the core air flowpath 37 and attached to the rail system 202. More particularly, the shaft 212 of the radial clamp 26 extends through an inspection hole 132 defined in the outer liner 108 of the combustor assembly 100 (the inspection hole 132 of the outer liner 108 being aligned with the inspection hole 132 defined in the outer combustor casing 27). The shaft 212 includes a pair of attachment pins 214 at a distal end for attaching the radial clamp 206 to the rail system 202. The attachment pins 214 are, for the embodiment depicted, movable relative to one another along the radial direction R by a tightening handle 216 at a radially outer end of the radial clamp 206. Accordingly, the attachment pins 214 may be moved closer to one another by the tightening handle 216 in order to attach/clamp the radial clamp 206 to the rail system 202. Such a configuration may allow for the radial clamps 206 to stabilize the rail system 202 within the core air flowpath 37 relative to the outer combustor casing 27, and more particularly, to mount the rail system 202 at a desired location within the core air flowpath 37. Further, such a configuration may allow for the radial clamps 206 to consistently mount the rail system 202 within the core air flowpath 37 of the turbofan engine 10, i.e., at the same location within the core air flowpath 37 of the turbofan engine 10 over multiple maintenance inspections, despite the technician or operator assembling the rail system 202.
It should be appreciated, however, that in other exemplary embodiments, the maintenance tool 200 may include any other suitable structural configuration for mounting the rail system 202 within the core air flowpath 37 of the turbofan engine 10. For example, in other exemplary embodiments, the maintenance tool 200 may include one or more components for attaching the rail system 202 directly to, e.g., a turbine rotor blade, a turbine nozzle, etc.
Referring now to
Referring now also to
Notably, each of the first and second ends 218, 220 of the rail segments 204 depicted in
Referring again specifically to
Notably, given this assembly method, in at least certain exemplary embodiments, one or more of the rail segments 204 of the rail system 202 may be formed of a material softer than the material forming the components defining the core air flowpath 37 within which the rail system 202 is assembled. For example, in certain exemplary embodiments, the rail segments 204 of the rail system 202 may be formed of a nonmetallic material, such as a plastic or plastic polymer material. Suitable plastic or plastic polymer materials for forming the rail segments 204 of the rail system 202 includes, without limitation poly(vinyl chloride) (“PVC”), polyethene (“PE”), polypropene (“PP”), etc. Additionally, or alternatively, one or more of the rail segments 204 may include a cushioning or guard formed of a material softer than the material forming the components defining the core air flowpath 37 within which the rail system 202 is assembled. For example, the first rail segment 204 may include a cushioning or guard on its forward end formed of, e.g., an elastomeric material to prevent scratching the components defining the core air flowpath 37 within which the rail system 202 is assembled.
Referring now back to
As is depicted, each of the rail segments 204 for the exemplary rail system 202 of the maintenance tool 200 described herein defines a groove 238. The grooves 238 of each of the rail segments 204 are aligned when the rail segments 204 are assembled, such that the grooves 238 together form a continuous groove 238 extending along an entire length of the rail system 202 (i.e., three hundred and sixty degrees(360°) in the circumferential direction C around the longitudinal centerline 12 of the turbofan engine 10 for the embodiment depicted). The maintenance head 236 is slidably connected to the grooves 238 of each of the plurality of rail segments 204 and is therefore movable along the grooves 238 of each of the plurality of rail segments 204. For the embodiment depicted, the grooves 238 defined by the plurality of rail segments 204 are each configured as a “T-shaped” groove and the maintenance head 236 for the exemplary maintenance tool 200 depicted includes a “T-shape” flange 240 slidably positioned within the grooves 238. However, in other exemplary embodiments, the maintenance head 236 may be slidably or movably connected to the plurality of rail segments 204 of the rail system 202 in any other suitable manner.
Referring particularly to
Each of the one or more cameras 242 may be operably connected to a control system (not depicted) configured to receive the one or more images captured by the one or more cameras 242. The one or more cameras 242 may be in wired or wireless communication with the control system. Moreover, the maintenance head 236 may be configured to store the images captured by the one or more cameras 242, or alternatively, the one or more cameras 242 may be configured to communicate directly with the control system during operation, such that a user or technician may view the images captured in real-time.
It should be appreciated, however, that in other exemplary embodiments, the maintenance head 236 may have any other suitable configuration. For example, in other exemplary embodiments, the maintenance head 236 may have any other suitable number of light sources 244 or cameras 242. Additionally the cameras 242 and light sources 244 may be directed in any other suitable direction. Moreover, it will be appreciated, that in other exemplary embodiments of the present disclosure, the maintenance head 236 may be configured to perform any other suitable maintenance operations of the gas turbine engine. For example, referring now briefly to
Referring now to
Additionally, referring specifically to
Referring particularly to
Moreover, in order to further ensure that the first and second lines 254, 256 remain tensioned and to account for any other abnormalities, the pulley system 250 further includes a first tensioner 260 operable with the first line 254 in a second tensioner 262 operable with the second line 256. Each of the first tensioner 260 and the second tensioner 262 generally include a wheel 264 operable with the first line 254 and second line 256, respectively, and an elastic member 266, which for the embodiment depicted is configured as a spring unit.
It should be appreciated, however, that in other exemplary embodiments, the pulley system 250 may be configured in any other suitable manner. For example, the pulley system 250 may instead include two spools, and further may include any other form of tensioner. For example, in other exemplary embodiments, one or both of the first tensioner 260 or second tensioner 262 may include two or more elastic members 266 and wheels 264.
Referring now particularly to
It should be appreciated that in certain embodiments, the first and second lines 254, 256 of the pulley system 250 may extend through one or more of the inspection holes 132 of the gas turbine engine when the maintenance tool 200 is assembled within the core air flowpath 37 of the gas turbine engine. For example, each of the first and second lines 254, 256 may extend through the same inspection hole 132, or alternatively, each may extend through a separate, individual inspection hole 132. With these configurations, the actuation device remains outside of the core air flowpath 37 when the maintenance tool 200 is assembled.
Further, it should be appreciated, that in other exemplary embodiments, the actuation device may instead be configured in any other suitable manner for moving the maintenance head 236 of the maintenance tool 200. Moreover, although the maintenance tool 200 is described herein as being used with a turbofan engine, it should be appreciated that the maintenance tool 200 may instead be used with any other suitable gas turbine engine, such as a turboshaft engine, a turboprop engine, a turbojet engine, etc.
Inclusion of an actuation device in accordance with one or more exemplary embodiments of the present disclosure may ensure a precise location of the maintenance head 236 is known during operation of the maintenance tool 200. For example, the actuation device may include an encoder to determine a location of the maintenance head 236. More specifically, when the actuation device is a spool assembly, a rotary encoder may be included on or otherwise operable with the spool to determine a precise location of the maintenance head 236 based at least in part on an amount of rotation of the spool. Accordingly, inclusion of an actuation device in accordance with one or more exemplary embodiments of the present disclosure may allow for a user or technician to accurately catalog the images taken of the various components of the gas turbine engine during maintenance operations. Such may ensure that any potentially problematic areas identified during such maintenance operations may be watched more closely during subsequent maintenance operations. Notably, this benefit is provided despite maintenance operations being performed by, e.g., an inexperienced technician, or by various different technicians during different maintenance operations.
Referring now to
The method 300 generally includes at (302) assembling a plurality of rail segments of a rail system of the maintenance tool within the core air flowpath of the gas turbine engine. More specifically, for the exemplary aspect depicted, assembling the plurality of rail segments at (302) includes at (304) inserting each of the plurality of rail segments sequentially through an individual inspection hole of the gas turbine engine. Notably, depending on the particular configuration of the gas turbine engine, inserting each of the plurality of rail segments at (304) sequentially through an individual inspection hole may include inserting each of the plurality of rail segments sequentially through a first, outer inspection hole (e.g., defined by an outer casing, such as an outer combustor casing) and through a second, inner inspection hole (e.g., defined by an inner component, such as an outer combustor liner). With such an exemplary aspect, the first and second inspection holes may be substantially aligned (see, e.g.,
Once the plurality of rail segments are positioned within the core air flowpath, the plurality of rail segments may snap together automatically by virtue of magnetic portions at adjacent ends of the adjacent rail segments. Additionally, for the method 300 the exemplary aspect depicted in
Assembling the plurality of rail segments at (302) may include assembling the plurality of rail segments at any suitable location within the core air flowpath, including, e.g., within the compressor section, the combustion section, or the turbine section. However, for the exemplary aspect depicted in
Notably, the exemplary method 300 may be utilized to perform maintenance operations without requiring any substantial disassembly of the gas turbine engine. For example, the only modification to the gas turbine engine required for implementing the method 300 is for one or more caps or plugs positioned within one or more of the inspection holes to be removed to allow for the assembly of the plurality of rail segments at (302). Accordingly, assembly of the plurality of rail segments at (302) includes, for the exemplary aspect depicted, at (310) assembling the plurality of rail segments of the rail system within the core air flowpath of the gas turbine engine while the gas turbine engine is substantially completely assembled.
Referring still to
Moreover, for the exemplary aspect depicted, moving the maintenance head at (312) additionally includes moving the maintenance head using an actuation device of the maintenance tool. More specifically, for the exemplary aspect depicted, the actuation device of the maintenance tool is configured as a pulley system having a spool, a first line, and a second line. Accordingly, for the exemplary aspect depicted, moving the maintenance head at (312) includes at (316) rotating the spool of the pulley system about a central axis of the spool. More specifically still, rotating the spool of the pulley system at (316) includes, for the exemplary aspect depicted, at (318) retracting the first line at a first speed and extending the second line at a second speed. It will be appreciated that for the exemplary aspect depicted both the first line and the second line are attached to the maintenance head, with the first line extending along the rail system to the maintenance head in a circumferential direction opposite a circumferential direction in which the second line extends along the rail system to the maintenance head (the “circumferential directions” here referring to a circumferential direction of the gas turbine engine when the maintenance tool is installed in the gas turbine engine). Additionally, the first speed is substantially equal to the second speed, such that the maintenance head may move in a smooth and controlled manner along the rail system.
Additionally, with such an actuator device configuration, a precise location of the maintenance head may be determined. For example, for the exemplary aspect depicted, rotating the spool of the pulley system about the central axis at (316) further includes at (320) determining a location of the maintenance head based at least in part on an amount of rotation of the spool of the pulley system. For example, the method 300 may include determining the location of the maintenance head at (316) based on a starting position of the maintenance head and a length of the first line retracted and/or a length of the second line extended. Additionally, or alternatively, the method 300 may include determining the location of the maintenance head at (316) using an encoder on or operable with the actuator device.
Furthermore, it should be appreciated, that for the exemplary aspect depicted in
Additionally, for the exemplary aspect depicted, moving the maintenance head at (312) includes determining a location of the maintenance head (e.g., based at least in part on an amount of rotation of the spool of the pulley system at (320)), and taking the image of one or more components of the gas turbine engine at (322) includes at (324) recording the determined location of the maintenance head when the image was taken.
More specifically, for the exemplary aspect depicted, taking the image of one or more components of the gas turbine engine at (322) includes at (326) taking a plurality of images of one or more components of the gas turbine engine at different locations along a length of the rail system. And, more specifically still, for the exemplary aspect depicted, recording the determined location of the maintenance head at (324) includes at (328) recording the determined location of the maintenance head when each of the images taken.
Notably, by recording a location of the maintenance head when the images are taken allows for the method 300 to catalog the images based on e.g., the location of the maintenance head, the component being imaged, etc. Further, the mounting of the rail system of the maintenance tool in accordance with the present method 300 provides for a relatively consistent mounting and location of the maintenance tool within the core air flowpath, despite the technician or operator installing the maintenance tool. Accordingly, over multiple maintenance inspection cycles, images of specific components, or regions of the gas turbine engine from within the core air flowpath, may be consistently taken. This allows for an operator or technician to compare images of the same component over time, or images of the same region over time, such that the operator or technician may keep an eye on any potentially problematic areas and prevent any potential damage areas from going unnoticed.
Moreover, such an exemplary method 300 enables components within a particular gas turbine engine to be compared with the same components in a different gas turbine engine (by virtue of the precision of the maintenance tool and maintenance method). These may be components within gas turbine engines being operating by different customers and in different environmental conditions. For example, the parts or components running more engine cycles can be quickly compared with newer parts or components. The exemplary method 300 enables effective preventative action quickly and meaningfully when needed. Technicians may access field experience data quickly and obtain accurate information as to what to expect with continuous engine operation. Further, engine maintenance schedules can be arranged with greater flexibility, and unnecessary engine overhaul can be avoided.
Referring still to
It should be appreciated, however, that in other exemplary aspects, the present disclosure may provide for any other suitable method for maintaining a gas turbine engine using a maintenance tool. For example, referring now to
Furthermore, the exemplary method 400 depicted in the flowchart of
However, the maintenance operations performed in the exemplary method 400 depicted in
Additionally, for the exemplary aspect depicted, spraying one or more components of the gas turbine engine with the coating at (406) includes at (408) spraying one or more components of the gas turbine engine with the coating through one or more spray nozzles of the maintenance head. Moreover, for the exemplary aspect depicted, spraying one or more components of the gas turbine engine with the coating at (406) includes at (410) spraying one or more of an inner liner of a combustor of the combustion section of the gas turbine engine or an outer liner of the combustor of the combustion section of the gas turbine engine. However, in other exemplary aspects, the method 400 may include spraying any other suitable components.
Utilization of one or more the exemplary aspects of the exemplary method 400 depicted in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This application is a continuation of U.S. patent application Ser. No. 15/370,398, entitled “GAS TURBINE ENGINE MAINTENANCE TOOL,” filed Dec. 6, 2016, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1513624 | Parker | Oct 1924 | A |
2564677 | Davis | Aug 1951 | A |
3131091 | Jones | Apr 1964 | A |
3635401 | Bromley | Jan 1972 | A |
3917432 | Feuerstein et al. | Nov 1975 | A |
3925580 | Brewer | Dec 1975 | A |
4659195 | D'Amelio | Apr 1987 | A |
4688555 | Wardle | Aug 1987 | A |
5028117 | Muhlenkamp-Becker | Jul 1991 | A |
5262206 | Rangaswamy | Nov 1993 | A |
5372312 | Vidusek | Dec 1994 | A |
5453383 | Roufs | Sep 1995 | A |
5474235 | Cole | Dec 1995 | A |
5644394 | Owens | Jul 1997 | A |
5867885 | Bales et al. | Feb 1999 | A |
6010746 | Descoteaux | Jan 2000 | A |
6414458 | Hatley et al. | Jul 2002 | B1 |
6459481 | Schaack | Oct 2002 | B1 |
6465090 | Stowell | Oct 2002 | B1 |
6532840 | Hatley et al. | Mar 2003 | B2 |
6619109 | Dailey et al. | Sep 2003 | B1 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7506822 | Cairo | Mar 2009 | B2 |
7509735 | Philip et al. | Mar 2009 | B2 |
7531048 | Woodcock et al. | May 2009 | B2 |
7582359 | Sabol | Sep 2009 | B2 |
7617603 | Coleman et al. | Nov 2009 | B2 |
7690840 | Zombo | Apr 2010 | B2 |
8221825 | Reitz | Jul 2012 | B2 |
8356482 | Duval | Jan 2013 | B2 |
8470460 | Lee | Jun 2013 | B2 |
8742944 | Mitchell | Jun 2014 | B2 |
8758502 | Nienburg | Jun 2014 | B2 |
8986778 | Zombo | Mar 2015 | B2 |
9073077 | Unosawa | Jul 2015 | B2 |
9096736 | Tanaka | Aug 2015 | B2 |
9096763 | Belov | Aug 2015 | B2 |
9102015 | Kulkarni | Aug 2015 | B2 |
9212947 | Feist | Dec 2015 | B2 |
9254077 | Soetermans | Feb 2016 | B2 |
9341586 | Henderkott | May 2016 | B2 |
9395301 | Cheverton | Jul 2016 | B2 |
9983147 | Shayan | May 2018 | B2 |
10265725 | Kulkarni | Apr 2019 | B2 |
10364701 | Keshavan | Jul 2019 | B2 |
10384808 | Bewlay | Aug 2019 | B2 |
10589300 | Bewlay | Mar 2020 | B2 |
10875054 | Kulkarni | Dec 2020 | B2 |
10994287 | Kulkarni | May 2021 | B2 |
11067002 | Dede | Jul 2021 | B2 |
11358171 | Bewlay | Jun 2022 | B2 |
20030221315 | Baumann | Dec 2003 | A1 |
20030229420 | Buckingham | Dec 2003 | A1 |
20040124268 | Frazier | Jul 2004 | A1 |
20040228976 | Skoog | Nov 2004 | A1 |
20050235493 | Philip et al. | Oct 2005 | A1 |
20060006589 | Canova | Jan 2006 | A1 |
20060042083 | Baker et al. | Mar 2006 | A1 |
20060045985 | Kozak | Mar 2006 | A1 |
20070063351 | Duda | Mar 2007 | A1 |
20080287741 | Ostrovsky et al. | Nov 2008 | A1 |
20090169752 | Fu | Jul 2009 | A1 |
20090252985 | Nagaraj | Oct 2009 | A1 |
20100136349 | Lee | Jun 2010 | A1 |
20120009080 | Shaw | Jan 2012 | A1 |
20120037074 | Outland | Feb 2012 | A1 |
20120279323 | Broda | Nov 2012 | A1 |
20120283963 | Mitchell | Nov 2012 | A1 |
20120312103 | Hannott | Dec 2012 | A1 |
20130074334 | Swiderski et al. | Mar 2013 | A1 |
20130232792 | Quinones et al. | Sep 2013 | A1 |
20140055596 | Hatcher, Jr. et al. | Feb 2014 | A1 |
20140248425 | Patterson et al. | Sep 2014 | A1 |
20140261824 | Byers | Sep 2014 | A1 |
20150028132 | Vidusek | Jan 2015 | A1 |
20150125286 | Suciu et al. | May 2015 | A1 |
20150160097 | Haldeman | Jun 2015 | A1 |
20150209915 | Rautenberg | Jul 2015 | A1 |
20150321964 | Sun | Nov 2015 | A1 |
20150355055 | Utay | Dec 2015 | A1 |
20160018292 | DeAscanis et al. | Jan 2016 | A1 |
20160069743 | McQuilkin | Mar 2016 | A1 |
20160069829 | Ruhge et al. | Mar 2016 | A1 |
20160160679 | Griffiths | Jun 2016 | A1 |
20160207639 | Ellis | Jul 2016 | A1 |
20160273114 | Hongoh | Sep 2016 | A1 |
20170157719 | Diwinsky | Jun 2017 | A1 |
20170173611 | Tan | Jun 2017 | A1 |
20170361919 | Waddleton | Dec 2017 | A1 |
20180002816 | Kennedy | Jan 2018 | A1 |
20180154381 | Bewlay | Jun 2018 | A1 |
20180250688 | Kulkarni | Sep 2018 | A1 |
20190003954 | Detor | Jan 2019 | A1 |
20200164392 | Bewlay | May 2020 | A1 |
Number | Date | Country |
---|---|---|
2597669 | Jan 2004 | CN |
19924607 | Nov 2000 | DE |
1494020 | Jan 2005 | EP |
2889711 | Jul 2015 | EP |
3043299 | Jul 2016 | EP |
3214519 | Sep 2017 | EP |
2000162350 | Jun 2000 | JP |
2001162350 | Jun 2001 | JP |
2015059556 | Mar 2015 | JP |
101004292 | Jan 2011 | KR |
2007023292 | Mar 2007 | WO |
2012151150 | Nov 2012 | WO |
2015086957 | Jun 2015 | WO |
2015116300 | Aug 2015 | WO |
Entry |
---|
European Search Report Corresponding to EP17879045 dated Jul. 27, 2020. |
PCT International Search Report & Opinion Corresponding to PCT/US2017/062618 dated Feb. 22, 2018. |
Bilge Senturk, et al.; CMAS-Resistant Plasma Sprayed Thermal Barrier Coatings Based on Y203-Stablized Zro2 with Al3+ and Ti4+ Solute Additions; Journal of Thermal Spray Technology, Apr. 2014; vol. 23, Issue 4; pp. 708-715. |
Rai, et al.; CMAS-Resistant Thermal Barrier Coatings (TBC); International Journal of Applied Ceramic Technology; May 2009; vol. 7, Issue 5; pp. 662-674. |
Steinke et al., A Novel Test Approach for Plasma-Sprayed Coatings Tested Simultaneously Under CMAS and Thermal Gradient Cycling Conditions, Surface and Coatings Technology 205.7,2010, pp. 2287-2295. |
Wu, et al.; Evaluation of Plasma Sprayed YSZ Thermal Barrier Coatings with the CMAS Deposits Infiltration using Impedance Spectroscopy; Progress in Natural Science: Material International; Feb. 2012; vol. 22, Issue 1; pp. 40-47. |
Number | Date | Country | |
---|---|---|---|
20210310415 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15370398 | Dec 2016 | US |
Child | 17351813 | US |