This disclosure relates to gas turbine engines, and more particularly to systems and methods for gas turbine engine motoring using a starter air valve with a manual override.
Gas turbine engines are used in numerous applications, one of which is for providing thrust to an airplane. When the gas turbine engine of an airplane has been shut off for example, after an airplane has landed at an airport, the engine is hot and due to heat rise, the upper portions of the engine will be hotter than lower portions of the engine. When this occurs thermal expansion may cause deflection of components of the engine which may result in a “bowed rotor” condition. If a gas turbine engine is in such a bowed rotor condition it is undesirable to restart or start the engine.
One approach to mitigating a bowed rotor condition is to use a starter system to drive rotation (i.e., dry motoring) of a spool within the engine for an extended period of time at a speed below which a resonance occurs (i.e., a critical speed or frequency) that may lead to damage when a sufficiently large bowed rotor condition is present. If a starter air valve of the starter system fails closed, the starter system may be incapable of performing dry motoring. If the starter air valve fails open, the starter system may be incapable of controlling the motoring speed, potentially reaching the resonance speed.
In an embodiment, a system for gas turbine engine motoring includes an air turbine starter coupled to a gearbox of a gas turbine engine and a starter air valve in fluid communication with the air turbine starter to drive motoring of the gas turbine engine responsive to a regulated pressure from a compressed air source. A manual override of the starter air valve is adjustable to one or more predefined intermediate positions that partially open the starter air valve to limit a motoring speed of the gas turbine engine below a resonance speed of a starting spool of the gas turbine engine responsive to the regulated pressure.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where the compressed air source is an auxiliary power unit, a ground cart, or a cross engine bleed.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where at least one valve of the compressed air source sets the regulated pressure.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include a controller that adjusts the at least one valve of the compressed air source in response to at least one parameter of the gas turbine engine to maintain the motoring speed of the gas turbine engine below the resonance speed.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where the at least one parameter includes one or more of: an engine speed of the gas turbine engine, a starter speed of the air turbine starter, and a starter air pressure.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where the controller dynamically adjusts the at least one valve based on one or more of: a pressure change of the compressed air source and a change in a targeted motoring speed of the gas turbine engine.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where the one or more predefined intermediate positions are set by one or more detents.
According to an embodiment, a system of an aircraft includes a donor gas turbine engine operable as a compressed air source to cross bleed a regulated pressure and a starting gas turbine engine. The starting gas turbine engine includes an air turbine starter coupled to a gearbox and a starter air valve in fluid communication with the air turbine starter to drive motoring of the starting gas turbine engine responsive to the regulated pressure. A manual override of the starter air valve is adjustable to one or more predefined intermediate positions that partially open the starter air valve to limit a motoring speed of the starting gas turbine engine below a resonance speed of a starting spool of the starting gas turbine engine responsive to the regulated pressure.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include a controller that adjusts the at least one valve of the compressed air source in response to at least one parameter of the starting gas turbine engine to maintain the motoring speed of the starting gas turbine engine below the resonance speed.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where the at least one parameter includes one or more of: an engine speed of the starting gas turbine engine, a starter speed of the air turbine starter, and a starter air pressure.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include where the controller dynamically adjusts the at least one valve based on one or more of: a pressure change of the compressed air source and a change in a targeted motoring speed of the starting gas turbine engine.
Another embodiment includes a method for gas turbine engine motoring. The method includes opening a flow path from a compressed air source to a starter air valve in fluid communication with an air turbine starter to drive motoring of a gas turbine engine. The compressed air source is controlled to provide a regulated pressure to the starter air valve set to a partially open position based on a manual override that is adjustable to one or more predefined intermediate positions that partially open the starter air valve to limit a motoring speed of the gas turbine engine below a resonance speed of a starting spool of the gas turbine engine responsive to the regulated pressure.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include adjusting, by a controller, the at least one valve of the compressed air source in response to at least one parameter of the gas turbine engine to maintain the motoring speed of the gas turbine engine below the resonance speed.
In addition to one or more of the features described above, or as an alternative to any of the foregoing embodiments, further embodiments may include dynamically adjusting, by the controller, the at least one valve based on one or more of: a pressure change of the compressed air source and a change in a targeted motoring speed of the gas turbine engine.
A technical effect of the apparatus, systems and methods is achieved by using a starter air valve with a manual override for gas turbine engine motoring as described herein.
The subject matter which is regarded as the present disclosure is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the present disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Various embodiments of the present disclosure are related to a bowed rotor start mitigation system in a gas turbine engine. Embodiments can include using a starter air valve to control a rotor speed of a starting spool of a gas turbine engine to mitigate a bowed rotor condition using a dry motoring process. Under normal operation during dry motoring, the starter air valve can be actively adjusted to deliver air pressure (i.e., compressed air) from an air supply to an air turbine starter of an engine starting system that controls starting spool rotor speed. Dry motoring may be performed by running an engine starting system at a lower speed with a longer duration than typically used for engine starting while dynamically adjusting the starter air valve to maintain the rotor speed and/or follow a dry motoring profile. The critical rotor speed refers to a major resonance speed where, if the temperatures are unhomogenized, the combination of a bowed rotor and similarly bowed casing and the resonance would lead to high amplitude oscillation in the rotor and high rubbing of blade tips on one side of the rotor, especially in the high pressure compressor if the rotor is straddle-mounted.
A dry motoring profile for dry motoring can be selected based on various parameters, such as a modeled temperature value of the gas turbine engine used to estimate heat stored in the engine core when a start sequence is initiated and identify a risk of a bowed rotor. The modeled temperature value alone or in combination with other values (e.g., measured temperatures) can be used to calculate a bowed rotor risk parameter. For example, the modeled temperature can be adjusted relative to an ambient temperature when calculating the bowed rotor risk parameter. The bowed rotor risk parameter may be used to take a control action to mitigate the risk of starting the gas turbine engine with a bowed rotor. The control action can include dry motoring consistent with the dry motoring profile. In some embodiments, a targeted rotor speed profile of the dry motoring profile can be adjusted as dry motoring is performed.
A full authority digital engine control (FADEC) system or other system may send a message to the cockpit to inform the crew of an extended time start time due to bowed rotor mitigation actions prior to completing an engine start sequence. If the engine is in a ground test or in a test stand, a message can be sent to the test stand or cockpit based on the control-calculated risk of a bowed rotor. A test stand crew can be alerted regarding a requirement to keep the starting spool of the engine to a speed below the resonance speed of the rotor in order to homogenize the temperature of the rotor and the casings about the rotor which also are distorted by temperature non-uniformity. Respective FADECs for each engine of an aircraft can exchange cross engine data including parameters that identify present conditions, commanded actions, scheduled adjustments, and the like which may impact control decisions of each FADEC in performing dry motoring while maintaining the engine speed of the starting spool of the starting engine below a resonance speed.
In embodiments, when a starter air valve fails shut, a manual override is adjusted to a predefined intermediate position that partially opens the starter air valve to limit a motoring speed of the gas turbine engine below a resonance speed of a starting spool of the gas turbine engine responsive to a regulated pressure. In some embodiments, a compressed air source actively adjusts the regulated pressure to achieve dry motoring while the starter air valve is maintained in a partially opened position by the manual override. One or more predefined intermediate positions can be set by one or more detents that limit opening of the starter air valve to specific positions, such as 10% open, 20% open, etc. A pilot and ground crew can coordinate setting of the manual override along with the compressed air source to maintain a starting engine below a resonance speed. In some embodiments, one or more controllers can coordinate adjustments to the regulated pressure based on how close the motoring speed of the starting engine is to a targeted motoring speed while the starter air valve is held at a partially open position by the manual override.
Referring now to
The example of
Turning now to
In an embodiment, the FADECs 102A, 102B and engine control interfaces 105A, 105B may each include memory to store instructions that are executed by one or more processors on one or more channels. The executable instructions may be stored or organized in any manner and at any level of abstraction, such as in connection with a controlling and/or monitoring operation of the gas turbine engines 10A, 10B of
A compressed air source 114 can provide a regulated pressure 109A, 109B to drive air turbine starters 120A, 120B of engine starting systems 101A, 101B. Compressed air from the compressed air source 114 is routed through ducts 117 (
The FADECs 102A, 102B can be configured with control laws to maintain a motoring speed below a threshold level (i.e., the resonance speed) for the engine system 100A, 100B while performing dry motoring based on compressed air source 114. In embodiments, FADECs 102A, 102B can observe various engine parameters and starting system parameters to actively control dry motoring and prevent fault conditions from damaging the gas turbine engines 10A, 10B. For example, FADECs 102A, 102B can observe engine speeds (N2) of gas turbine engines 10A, 10B and may receive starter system parameters such as starter speeds (NS) and/or starter air pressures (SAP). In embodiments, the starter air valves 116A, 116B can be partially opened where the corresponding manual override 150A, 150B is adjusted to one or more predefined intermediate positions.
In the example of
The FADECs 102A, 102B can monitor engine speed (N2), starter speed (NS), starter air pressure (SAP), and/or other engine parameters to determine an engine operating state and control the starter air valves 116A, 116B. Thus, the FADECs 102A, 102B can each establish a control loop with respect to a motoring speed (N2 and/or NS) and/or starter air pressure to adjust positioning of the starter air valves 116A, 116B. The FADECs 102A, 102B can also exchange cross engine data on digital communication bus 106 and/or cross engine bus 106A to include present conditions and commands of each engine system 100A, 100B into local control decisions that may impact characteristics of the compressed air available at the starter air valves 116A, 116B.
In some embodiments, the starter air valves 116A, 116B are discrete valves designed as on/off valves that are typically commanded to either fully opened or fully closed. However, there is a time lag to achieve the fully open position and the fully closed position. By selectively alternating an on-command time with an off-command time through the electromechanical devices 110A, 110B, intermediate positioning states (i.e., partially opened/closed) can be achieved. The FADECs 102A, 102B can modulate the on and off commands (e.g., as a duty cycle using pulse width modulation) to the electromechanical devices 110A, 110B to further open the starter air valves 116A, 116B and increase a rotational speed of the gas turbine engine shafts 50A, 50B. Pneumatic lines or mechanical linkage (not depicted) can be used to drive the starter air valves 116A, 116B between the open position and the closed position. The electromechanical devices 110A, 110B can each be a solenoid that positions the starter air valves 116A, 116B based on intermittently supplied electric power as commanded by the FADECs 102A, 102B. In an alternate embodiment, the electromechanical devices 110A, 110B are electric valves controlling muscle air to adjust the position of the starter air valves 116A, 116B as commanded by the FADECs 102A, 102B.
In an alternate embodiment, rather than using electromechanical devices 110A, 110B to achieve a partially open position of the starter air valves 116A, 116B, the starter air valves 116A, 116B can be variable position valves that are dynamically adjustable to selected valve angles by the FADECs 102A, 102B. When implemented as variable position valves, the starter air valves 116A, 116B can be continuous/infinitely adjustable and hold a commanded valve angle, which may be expressed in terms of a percentage open/closed and/or an angular value (e.g., degrees or radians). Performance parameters of the starter air valves 116A, 116B can be selected to meet dynamic response requirements.
In some embodiments, the FADECs 102A, 102B can each monitor a valve angle of the starter air valves 116A, 116B when valve angle feedback is available. The FADECs 102A, 102B can establish an outer control loop with respect to motoring speed and an inner control loop with respect to the valve angle of the starter air valves 116A, 116B. Valve angle feedback and/or valve commands can be included in the cross engine data exchanged between the FADECs 102A, 102B.
To further enhance control aspects, the FADECs 102A, 102B can exchange cross engine data including parameters that directly or indirectly modify an aspect of the compressed air received at the starter air valves 116A, 116B. Cross engine data can be sent on the digital communication bus 106 or an alternate link (e.g., cross engine bus 106A). Cross engine data may include fault information, such as a detected failure of the starter air valves 116A, 116B and/or the air turbine starters 120A, 120B. Present condition information and/or commands included in the cross engine data can allow the FADECs 102A, 102B to track and/or predict events that will impact available compressed air for dry motoring at each of the engine starting systems 101A, 101B. For example, when starter air valve 116B is partially opened as a result of manual override 150B, FADEC 102A may control donor gas turbine engine 10A as compressed air source 114 and adjust a cross bleed of regulated pressure 109B to limit the motoring speed of the starting gas turbine engine 10B below a resonance speed of a starting spool of the gas turbine engine 10B responsive to the regulated pressure 109B, for instance, by adjusting pressure regulating valve 166A of
At block 202, a flow path 180 is opened from a compressed air source 114 to a starter air valve 116A, 116B in fluid communication with an air turbine starter 120A, 120B to drive motoring of a gas turbine engine 10A, 10B. Opening of the flow path 180 can include adjusting one or more valves and powering the compressed air source 114 to provide a regulated pressure 109A, 109B. In embodiments where multiple compressed air sources are available, the compressed air source 114 having a reliable ability to set and regulate pressure may be selected, e.g., cross bleed may be preferred to a ground cart or auxiliary power unit due to more precise pressure control characteristics in some embodiments.
At block 204, the compressed air source 114 is controlled to provide a regulated pressure 109A, 109B to the starter air valve 116A, 116B set to a partially open position based on a manual override 150A, 150B that is adjustable to one or more predefined intermediate positions that partially open the starter air valve 116A, 116B to limit a motoring speed of the gas turbine engine 10A, 10B below a resonance speed of a starting spool (e.g., straddle-mounted spool 32A or over-hung mounted spool 32B) of the gas turbine engine 10A, 10B responsive to the regulated pressure 109A, 109B. The one or more predefined intermediate positions can be set by one or more detents 154A, 154B. The regulated pressure 109A, 109B can be set by at least one valve of the compressed air source 114, such as pressure regulating valve 166A, 166B. A controller, such as FADEC 102A, 102B, can adjust the at least one valve of the compressed air source 114 in response to at least one parameter of the gas turbine engine 10A, 10B to maintain the motoring speed of the gas turbine engine 10A, 10B below the resonance speed. The at least one parameter can be one or more of: an engine speed of the gas turbine engine 10A, 10B, a starter speed of the air turbine starter 120A, 120B, and a starter air pressure. The controller can dynamically adjust the at least one valve based on one or more of: a pressure change of the compressed air source 114 and a change in a targeted motoring speed of the gas turbine engine 10A, 10B. The targeted motoring speed can be a fixed value below the resonance speed or may vary according to a dry motoring profile or other control source.
Accordingly and as mentioned above, it is desirable to detect, prevent and/or clear a “bowed rotor” condition in a gas turbine engine that may occur after the engine has been shut down. As described herein and in one non-limiting embodiment, the FADECs 102A, 102B (e.g., controller 102) may be programmed to automatically take the necessary measures in order to provide for a modified start sequence without pilot intervention other than the initial start request. In an exemplary embodiment, the FADECs 102A, 102B, and/or engine control interfaces 105A, 105B comprises a microprocessor, microcontroller or other equivalent processing device capable of executing commands of computer readable data or program for executing a control algorithm and/or algorithms that control the start sequence of the gas turbine engine. In order to perform the prescribed functions and desired processing, as well as the computations therefore (e.g., the execution of Fourier analysis algorithm(s), the control processes prescribed herein, and the like), the FADECs 102A, 102B, and/or engine control interfaces 105A, 105B may include, but not be limited to, a processor(s), computer(s), memory, storage, register(s), timing, interrupt(s), communication interfaces, and input/output signal interfaces, as well as combinations comprising at least one of the foregoing. For example, the FADECs 102A, 102B, and/or engine control interfaces 105A, 105B may include input signal filtering to enable accurate sampling and conversion or acquisitions of such signals from communications interfaces. As described above, exemplary embodiments of the disclosure can be implemented through computer-implemented processes and apparatuses for practicing those processes.
While the present disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the present disclosure is not limited to such disclosed embodiments. Rather, the present disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the present disclosure. Additionally, while various embodiments of the present disclosure have been described, it is to be understood that aspects of the present disclosure may include only some of the described embodiments. Accordingly, the present disclosure is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1951875 | Laabs | Mar 1934 | A |
2617253 | Fusner et al. | Nov 1952 | A |
2840987 | Bloomberg et al. | Jul 1958 | A |
2962597 | Evans | Nov 1960 | A |
3057155 | Rizk | Oct 1962 | A |
3098626 | Messinger | Jul 1963 | A |
3151452 | Bunger et al. | Oct 1964 | A |
3764815 | Habock et al. | Oct 1973 | A |
3793905 | Black et al. | Feb 1974 | A |
3812378 | Coman | May 1974 | A |
3898439 | Reed et al. | Aug 1975 | A |
3951008 | Schneider et al. | Apr 1976 | A |
4044550 | Vermilye | Aug 1977 | A |
4069424 | Burkett | Jan 1978 | A |
4144421 | Sakai | Mar 1979 | A |
4380146 | Yannone et al. | Apr 1983 | A |
4598551 | Dimitroff, Jr. et al. | Jul 1986 | A |
4627234 | Schuh | Dec 1986 | A |
4669893 | Chalaire et al. | Jun 1987 | A |
4702273 | Allen, Jr. | Oct 1987 | A |
4713985 | Ando | Dec 1987 | A |
4733529 | Nelson et al. | Mar 1988 | A |
4854120 | Nelson et al. | Aug 1989 | A |
4979362 | Vershure, Jr. | Dec 1990 | A |
4979365 | Baker | Dec 1990 | A |
5103629 | Mumford et al. | Apr 1992 | A |
5123239 | Rodgers | Jun 1992 | A |
5127220 | Jesrai et al. | Jul 1992 | A |
5174109 | Lampe | Dec 1992 | A |
5184458 | Lampe et al. | Feb 1993 | A |
5201798 | Hogan | Apr 1993 | A |
5349814 | Ciokajlo et al. | Sep 1994 | A |
6146090 | Schmidt | Nov 2000 | A |
6168377 | Wolfe et al. | Jan 2001 | B1 |
6190127 | Schmidt | Feb 2001 | B1 |
6318958 | Giesler et al. | Nov 2001 | B1 |
6478534 | Bangert et al. | Nov 2002 | B2 |
6498978 | Leamy et al. | Dec 2002 | B2 |
6517314 | Burnett et al. | Feb 2003 | B1 |
6558118 | Brisson et al. | May 2003 | B1 |
6681579 | Lane et al. | Jan 2004 | B2 |
6762512 | Nelson | Jul 2004 | B2 |
6884027 | Faulkner | Apr 2005 | B2 |
6935836 | Ress, Jr. et al. | Aug 2005 | B2 |
7104072 | Thompson | Sep 2006 | B2 |
7133801 | Song | Nov 2006 | B2 |
7409319 | Kant et al. | Aug 2008 | B2 |
7428819 | Cataldi et al. | Sep 2008 | B2 |
7507070 | Jones | Mar 2009 | B2 |
7513119 | Zielinski et al. | Apr 2009 | B2 |
7543439 | Butt et al. | Jun 2009 | B2 |
7587133 | Franke et al. | Sep 2009 | B2 |
7742881 | Muralidharan et al. | Jun 2010 | B2 |
7770400 | Iasillo et al. | Aug 2010 | B2 |
7909566 | Brostmeyer | Mar 2011 | B1 |
7972105 | Dejoris et al. | Jul 2011 | B2 |
8090456 | Karpman et al. | Jan 2012 | B2 |
8291715 | Libera et al. | Oct 2012 | B2 |
8306776 | Ihara et al. | Nov 2012 | B2 |
8744634 | Purani et al. | Jun 2014 | B2 |
8770913 | Negron et al. | Jul 2014 | B1 |
8776530 | Shirooni et al. | Jul 2014 | B2 |
8820046 | Ross et al. | Sep 2014 | B2 |
8918264 | Jegu et al. | Dec 2014 | B2 |
9046111 | Harvey et al. | Jun 2015 | B2 |
9086018 | Winston et al. | Jul 2015 | B2 |
9103284 | Erickson et al. | Aug 2015 | B2 |
9121309 | Geiger | Sep 2015 | B2 |
9732762 | Duong et al. | Aug 2017 | B2 |
10125690 | Zaccaria et al. | Nov 2018 | B2 |
20020173897 | Leamy et al. | Nov 2002 | A1 |
20030145603 | Reed et al. | Aug 2003 | A1 |
20040000656 | Wiggins | Jan 2004 | A1 |
20040131138 | Correia et al. | Jul 2004 | A1 |
20070234738 | Borcea | Oct 2007 | A1 |
20090301053 | Geiger | Dec 2009 | A1 |
20100085676 | Wilfert | Apr 2010 | A1 |
20100095791 | Galloway | Apr 2010 | A1 |
20100132365 | Labala | Jun 2010 | A1 |
20100293961 | Tong et al. | Nov 2010 | A1 |
20100326085 | Veilleux | Dec 2010 | A1 |
20110077783 | Karpman et al. | Mar 2011 | A1 |
20110146276 | Sathyanarayana et al. | Jun 2011 | A1 |
20110153295 | Yerramalla et al. | Jun 2011 | A1 |
20110296843 | Lawson, Jr. | Dec 2011 | A1 |
20120240591 | Snider et al. | Sep 2012 | A1 |
20120266601 | Miller | Oct 2012 | A1 |
20120266606 | Zeiner et al. | Oct 2012 | A1 |
20130031912 | Finney et al. | Feb 2013 | A1 |
20130091850 | Francisco | Apr 2013 | A1 |
20130101391 | Szwedowicz et al. | Apr 2013 | A1 |
20130251501 | Araki et al. | Sep 2013 | A1 |
20140123673 | Mouze et al. | May 2014 | A1 |
20140154087 | Kirchner et al. | Jun 2014 | A1 |
20140199157 | Haerms et al. | Jul 2014 | A1 |
20140233089 | Fermann et al. | Aug 2014 | A1 |
20140241878 | Herrig et al. | Aug 2014 | A1 |
20140271152 | Rodriguez | Sep 2014 | A1 |
20140283527 | Ling et al. | Sep 2014 | A1 |
20140301820 | Lohse et al. | Oct 2014 | A1 |
20140318144 | Lazzeri et al. | Oct 2014 | A1 |
20140334927 | Hammerum | Nov 2014 | A1 |
20140366546 | Bruno et al. | Dec 2014 | A1 |
20140373518 | Manneville et al. | Dec 2014 | A1 |
20140373532 | Diemer et al. | Dec 2014 | A1 |
20140373552 | Zaccaria et al. | Dec 2014 | A1 |
20140373553 | Zaccaria | Dec 2014 | A1 |
20140373554 | Pech et al. | Dec 2014 | A1 |
20150016949 | Smith | Jan 2015 | A1 |
20150096359 | Catt | Apr 2015 | A1 |
20150115608 | Draper | Apr 2015 | A1 |
20150121874 | Yoshida et al. | May 2015 | A1 |
20150128592 | Filiputti et al. | May 2015 | A1 |
20150159625 | Hawdwicke, Jr. et al. | Jun 2015 | A1 |
20150167553 | Nesdill et al. | Jun 2015 | A1 |
20160332736 | Parmentier et al. | Nov 2016 | A1 |
20160348588 | Ross et al. | Dec 2016 | A1 |
20170233089 | Zaccaria et al. | Aug 2017 | A1 |
20170234235 | Pech | Aug 2017 | A1 |
20170234238 | Schwarz et al. | Aug 2017 | A1 |
20170342908 | Hon | Nov 2017 | A1 |
20180022463 | Teicholz et al. | Jan 2018 | A1 |
20180022464 | Gelwan et al. | Jan 2018 | A1 |
20180022465 | Gelwan et al. | Jan 2018 | A1 |
20180023413 | Chowdhury et al. | Jan 2018 | A1 |
20180023479 | Clauson et al. | Jan 2018 | A1 |
20180023484 | Gelwan et al. | Jan 2018 | A1 |
20180045122 | Veilleux | Feb 2018 | A1 |
20180149090 | Maalouf et al. | May 2018 | A1 |
20180230946 | Virtue, Jr. et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
1258618 | Nov 2002 | EP |
2305986 | Apr 2011 | EP |
2514949 | Oct 2012 | EP |
3205836 | Aug 2017 | EP |
3205843 | Aug 2017 | EP |
3205849 | Aug 2017 | EP |
3205859 | Aug 2017 | EP |
3208429 | Aug 2017 | EP |
3273007 | Jan 2018 | EP |
3273008 | Jan 2018 | EP |
2933131 | Jan 2010 | FR |
717183 | Oct 1954 | GB |
1186375 | Apr 1970 | GB |
1374810 | Nov 1974 | GB |
2117842 | Oct 1983 | GB |
201408865 | May 2015 | IN |
2002371806 | Dec 2002 | JP |
2004036414 | Feb 2004 | JP |
9900585 | Jan 1999 | WO |
2013007912 | Jan 2013 | WO |
2014152701 | Sep 2014 | WO |
2015030946 | Mar 2015 | WO |
2015145034 | Oct 2015 | WO |
2016203157 | Dec 2016 | WO |
Entry |
---|
EP Application No. 17199896.6 Office Action dated Dec. 11, 2018, 3 pages. |
European Search Report for Application No. EP17194050, dated Feb. 8, 2018 (6 pp.). |
Extended European Search Report for Application No. 17181728.1-1607 dated Dec. 21, 2017 (8 pp.). |
Extended European Search Report for Application No. 17181931.1-1607 dated Dec. 8, 2017 (7 pp.). |
Extended European Search Report for Application No. 17181979.0-1607 dated Dec. 13, 2017 (8 pp.). |
Extended European Search Report for Application No. 17182145.7-1607 dated Dec. 7, 2017 (7 pp.). |
Extended European Search Report for Application No. 17182405.5-1607 dated Dec. 18, 2017 (7 pp.). |
Extended European Search Report for Application No. 17182126.7-1007, dated Feb. 16, 2018 (7 pp.). |
Extended European Search Report for Application No. 17199896.6-1006, dated Mar. 7, 2018 (11 pp.). |
Calculation Method and Simulation of Air Bleeding Loss for Aircraft Start System; San Mai Su, et al., 2018 37th Chinese Control Conference (CCC); pp. 1764-1769; IEEE Conference; year 2018. |
Second law analysis of extra power requirements for a cascade of industrial compressors; S. Strevell et al, IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Eng. Conf. (Cat No. 97CH6203); vol. 3, pp. 1581-1586; IEE Conf; year 1997. |
EP Application No. 17200204.0 Extended EP Search Report dated May 15, 2018, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20180094588 A1 | Apr 2018 | US |