Gas turbine engine system

Information

  • Patent Grant
  • 6544001
  • Patent Number
    6,544,001
  • Date Filed
    Tuesday, September 4, 2001
    23 years ago
  • Date Issued
    Tuesday, April 8, 2003
    21 years ago
Abstract
A turbine blade for a gas turbine engine comprises an aerofoil having a suction and pressure side. The pressure side is provided with a reflex curvature at the aerofoil trailing edge region so as to reduce the thickness of the aerofoil in that region.
Description




FIELD OF THE INVENTION




This invention relates to a gas turbine engine. More particularly this invention is concerned with the design of aerofoils for gas turbine engines and in particular turbine blades or nozzle guide vanes.




BACKGROUND OF THE INVENTION




An important consideration at the design stage of a gas turbine engine is the need to ensure that certain parts of the engine do not absorb heat to an extent that is detrimental to their safe operation. One principal area of the engine where this consideration is of particular importance is the turbine.




High thermal efficiency of a gas turbine engine is dependent on high turbine entry temperatures which are limited by the turbine blade and nozzle guide vane materials. Continuous cooling of these components allows their environmental operating temperatures to exceed the material's melting point without affecting blade and vane integrity.




There have been numerous previous methods of turbine vane and turbine blade cooling. The use of internal cooling, external film cooling and holes or passageways providing impingement cooling are now common in the design of both turbines and combustors.




The shape of a nozzle guide vane or a turbine vane can substantially affect the efficiency of the turbine. The hot gases flowing over the surface of a turbine blade or nozzle guide vane forms a boundary layer around both the pressure side and suction side of the blade or vane. Ideally these flows should meet at the trailing edge of the vane causing pressure recovery and limiting the losses to friction ones only. In practice, however, the boundary layers lose energy and fail to efficiently rejoin at the trailing edge, separating and causing drag and trailing edge losses in addition to the friction losses. In order to limit these losses and improve the aerodynamic efficiency of the aerofoil it is desirable to manufacture the trailing edge as thin as possible.




However it is now essential to provide turbine blades and nozzle guide vanes with cooling holes or slots to provide both impingement cooling, internal cooling and film cooling of the blades or vanes. The blades and vanes are hollow and the internal cavities receive cooling air, usually from the compressor, which is exhausted through slots or holes at the trailing edge region.




It is known to provide the trailing edge portion aerofoils with ‘letterbox slots’ through which cooling air is exhausted. The ‘letterbox slot’ is formed by extending the suction side of the aerofoil beyond the pressure side so as to form an overhang portion. This allows the extremity of the trailing edge portion to be thinner, hence improving aerodynamic efficiency. However there are problem with overheating and cracking of the ‘overhang’ portion of the trailing edge due to poor cooling thereof.




Although it is desirable to have as thin a trailing edge as possible without the need for a ‘letterbox slot’ arrangement, it is difficult to manufacture holes in a very thin trailing edge. There is a high scrap rate in the manufacture of such trailing edges due to the difficulty of forming holes therein. It is an aim of this invention to alleviate the difficulties associated with manufacturing trailing edges formed with cooling holes without compromising the aerodynamic efficiency of the turbine aerofoils.




SUMMARY OF THE INVENTION




According to the present invention there is provided an aerofoil member comprising a pressure surface, a suction surface, and a trailing edge portion, said aerofoil member further comprising at least one internal cavity for receiving cooling air and at least one aperture formed in its trailing edge region for exhausting cooling air from said at least one internal cavity, wherein said pressure surface is tapered toward said suction surface at the trailing edge and adjacent said aperture so as to reduce the thickness of the aerofoil member in that region.




Preferably the tapered region of said pressure surface comprises a curved portion.




Preferably the aerofoil comprises a plurality of apertures are provided in the trailing edge.











BRIEF DESCRIPTION OF THE DRAWINGS




An embodiment of the invention will now be described with respect to the accompanying drawings in which:





FIG. 1

is a schematic sectioned view of a ducted gas turbine engine which incorporates a number of turbine blades in accordance with the present invention.





FIG. 2

is a view of a nozzle guide vane and turbine blade arrangement of a gas turbine engine in accordance with the present invention.





FIG. 3

is a section view of a turbine blade in accordance with the present invention.





FIG. 4

is an enlarged view of the trailing edge portion of FIG.


3


.





FIG. 5

is an enlarged section view of a trailing edge portion of a turbine blade according to another embodiment of the invention.











DETAILED DESCRIPTION OF THE INVENTION




With reference to

FIG. 1

, a ducted gas turbine engine shown at


10


is of a generally conventional configuration. It comprises in axial flow series a fan


11


, intermediate pressure compressor


12


, high pressure compressor


13


, combustion equipment


14


, high, intermediate and low pressure turbines


15


,


16


and


17


respectively and an exhaust nozzle


18


. Air is accelerated by the fan


11


to produce two flows of air, the larger of which is exhausted from the engine


10


to provide propulsive thrust. The smaller flow of air is directed into the intermediate pressure compressor


12


where it is compressed and then directed into the high pressure compressor


13


where further compression takes place. The compressed air is then mixed with the fuel in the combustion equipment


14


and the mixture combusted. The resultant combustion products then expand through the high, intermediate and low pressure turbines


15


,


16


and


17


respectively before being exhausted to atmosphere through the exhaust nozzle


18


to provide additional propulsive thrust.




Now referring to

FIG. 2

part of the high pressure turbine


15


is shown in greater detail in a partial broken away view. The high pressure turbine


15


includes an annular array of similar radially extending air cooled aerofoil turbine blades


20


located upstream of an annular array aerofoil nozzle guide vanes


22


. Several more axially extending alternate annular arrays of nozzle guide vanes and turbine blades are provided downstream of the turbine blades


20


, however these are not shown in

FIG. 2

for reasons of clarity.




The nozzle guide vanes


22


each comprise an aerofoil portion


24


with the passage between adjacent vanes forming a convergent duct


26


. The turbine blades


20


also comprise an aerofoil portion


25


. The vanes


22


are located in a casing that contains the turbine


15


in a manner that allows for expansion of the hot air from the combustion chamber


14


. Both the nozzle guide vanes


22


and turbine blades


20


are cooled by passing compressor delivery air through them to reduce the effects of high thermal stresses and gas loads. Arrows A indicate this flow of cooling air. Cooling holes


28


provide both film cooling and impingement cooling of the nozzle guide vanes


22


and turbine blades


20


.




In operation hot gases flow through the annular gas passage


30


, which act upon the aerofoil portions of the turbine blades


20


to provide rotation of a disc (not shown) upon which the blades


20


are mounted. The gases are extremely hot and internal cooling of the vanes


22


and the blades


20


is necessary. Both the vanes


22


and the blades


20


are hollow in order to achieve this and in the case of vanes


22


cooling air derived from the compressor


13


is directed into their radially outer extents through apertures


32


formed within their radially outer platforms


34


. The air then flows through the vanes


22


to exhaust therefrom through a large number of cooling holes


28


provided in the aerofoil portion


24


into the gas stream flowing through the annular gas passage


30


.




Both the nozzle guide vane aerofoil


24


and turbine blade aerofoil


25


comprises a pressure surface


24




a,




25




a


and a suction surface


24




b,




25




b


and these portions meet at the trailing edges


36


,


38


.




Now referring to

FIGS. 3

to


5


, a series of holes or slots


40


are formed within the portion of blade material adjoining the pressure and suction surfaces


25




a,




25




b


at the trailing edge


38


. These holes exhaust cooling air, directed from the hollow portions


42


of the blade


22


, along the length of the trailing edge


38


of the blade


22


. Although holes are usually drilled or cast any suitable manufacturing technique may be used.




The trailing edge region


38


of the aerofoil is required to be a thin as possible for aerodynamic efficiency. However this makes the casting of holes through the trailing edge region


38


difficult to achieve. The present invention alleviates this problem by tapering the thickness of the pressure surface


25




a


such that the distance between the blade hollow portion


42


and trailing edge


38


is minimised. In

FIG. 4

this tapered region


44


has a large radius of curvature.




In

FIG. 5

the pressure surface


25




a


is tapered such that the suction surface


25




b


extends beyond it at the trailing edge


38


. This allows a ‘smoother’ surface hence reducing further the chance of upstream flow separation.




Advantageously the aerofoil core thickness can be increased making it easier to manufacture trailing edge holes. The aerodynamic efficiency of the aerofoil


25


is not compromised since the reflex pressure surface achieves extra thickness at the rear of the core without altering the trailing edge local shape and without compromising the velocity distribution on either of the pressure and suction surfaces. Thus the suction surface


25




b


velocity distribution is also not significantly penalised. Also this tapering of the pressure surface of the aerofoil provides reduced boundary layer acceleration at the rear of the pressure surface giving an advantageous lower heat transfer coefficient.




Although the above described embodiment of the present invention is directed to a turbine blade it is to be appreciated that the invention is suitable for any aerofoil member requiring cooling, for example a nozzle guide vane.



Claims
  • 1. An aerofoil member comprising a pressure surface, a suction surface, and a trailing edge portion, said aerofoil member further comprising at least one internal cavity for receiving cooling air and at least one aperture formed in its trailing edge region for exhausting cooling air from said at least one internal cavity, wherein said pressure surface is tapered toward said suction surface at the trailing edge and adjacent said aperture so as to reduce the thickness of the aerofoil member in that region, wherein the tapered region of said pressure surface is curved inwardly toward said pressure side at the trailing edge.
  • 2. An aerofoil member as claimed in claim 1 wherein the tapered region of said pressure surface comprises a curved portion.
  • 3. An aerofoil member as claimed in claim 1 wherein the suction surface of said aerofoil extends beyond the pressure surface at the trailing edge of said aerofoil.
  • 4. An aerofoil member as claimed in claim 1 wherein a plurality of apertures are provided in the trailing edge of said aerofoil.
  • 5. An aerofoil member as claimed in claim 1 wherein the pressure surface of said aerofoil member is tapered along its whole width at the trailing edge region of the aerofoil.
Priority Claims (1)
Number Date Country Kind
0022296 Sep 2000 GB
US Referenced Citations (4)
Number Name Date Kind
4434835 Willgoose Mar 1984 A
6129515 Soechting et al. Oct 2000 A
6179565 Palumbo et al. Jan 2001 B1
6270317 Manning et al. Aug 2001 B1
Foreign Referenced Citations (5)
Number Date Country
241180 Oct 1987 EP
924383 Jun 1999 EP
2017229 Oct 1979 GB
1580915 Dec 1980 GB
1605194 Apr 1983 GB