1. Technical Field
The disclosure generally relates to gas turbine engines.
2. Description of the Related Art
Gas turbine engines use compressors to compress gas for combustion. In particular, a compressor typically uses alternating sets of rotating blades and stationary vanes to compress gas. Gas flowing through such a compressor is forced between the sets and between adjacent blades and vanes of a given set. Similarly, after combustion, hot expanding gas drives a turbine that has sets of rotating blades and stationary vanes.
Gas turbine engine systems involving mechanically alterable vane throat areas are provided. In this regard, an exemplary embodiment of a vane for a gas turbine engine comprises: a leading edge; a trailing edge; a suction side surface extending between the leading edge and the trailing edge; a cavity having an aperture located in the suction side surface; and a barrel located within the cavity and being moveable therein such that movement of the barrel alters an extent to which the barrel protrudes through the aperture.
An exemplary embodiment of a vane assembly for a gas turbine engine comprises: a vane having a pressure side; and an adjacent vane having a suction side located adjacent to the pressure side, the vane and the adjacent vane defining a throat area therebetween, the suction side of the adjacent vane having a cavity and a barrel retained by the cavity, the barrel being moveable such that movement of the barrel alters the throat area.
An exemplary embodiment of a gas turbine engine comprises: a vane assembly having a vane and an adjacent vane; the vane having a pressure side; and the adjacent vane having a suction side located adjacent to the pressure side, the vane and the adjacent vane defining a throat area therebetween, the suction side of the adjacent vane having a cavity and a barrel retained by the cavity, the barrel being moveable such that movement of the barrel alters the throat area.
Other systems, methods, features and/or advantages of this disclosure will be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be within the scope of the present disclosure.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Gas turbine engine systems involving mechanically alterable vane throat areas are provided, several exemplary embodiments of which will be described in detail. In some embodiments, a throat area between adjacent vanes is altered by moving a barrel located on a suction side of one of the vanes. The barrel is rotatable such that an exterior of the barrel can mechanically alter the throat area between the adjacent vanes. In some embodiments, one or more fluidic jets can be used to additionally alter the throat area and/or modify flow characteristics of the gas flow path in a vicinity of the barrel.
In this regard, reference is made to the schematic diagram of
Two adjacent vanes of the vane assembly 110 are depicted schematically in
Similarly, vane 204 includes a leading edge 215, a trailing edge 216, a pressure side 217 and a suction side 218. Vane 204 also incorporates a moveable (e.g., rotatable) barrel 219, as well as a fluidic jet 220. In particular, a cavity 222 includes an aperture 224 that is located in the suction side 218. The barrel 219 is positioned within the cavity and is moveable therein.
In at least some positions, at least a portion of the barrel 219 extends through the aperture 224 and outwardly from the suction side 218. Specifically, in a first position (depicted by the dashed lines), a surface 226 of the barrel is generally flush with the suction side 218. Correspondingly, the throat area (A) is created by surface 207 and either surface 218 or 226, depending on which surface (218 or 226) is closest to surface 207. However, in a second position, portion 228 of the barrel protrudes outwardly from the suction side, thereby mechanically altering the throat area (B).
In the embodiment of
The fluidic jet energizes the near surface flow by imparting flow momentum to the flow between vanes 202 and 204 and through the throat area (B), thereby preventing flow separation from surface 218 and the associated losses accompanying flow separation.
As shown in
Barrel 302 is generally a cylindrical structure that extends along a longitudinal axis 310 within a cavity 311 between a root and a tip of the vane. As shown in
In contrast,
In
Notably, air can be provided from the plenum and through a channel of sufficient volume and pressure to form a fluidic jet at the outlet of the channel. In some embodiments, a fluidic jet can be used to augment the gas flow path in a vicinity of the barrel in order to reduce a potential for flow separation from the suction side surface. Additionally or alternatively, a fluidic jet can be used to influence the throat area directly, such as by repositioning the streamline flow in a vicinity of the fluidic jet. As an example, the embodiment of
In some embodiments, a fluidic jet can be controlled independently of positioning of the barrel such that communication of the channel with the plenum does not necessarily dictate whether air is provided from the plenum to the channel. It should also be noted that in some embodiments, two or more of the channels can communicate with each other such that air provided by the plenum to one of the channels can be emitted by outlets of multiple channels. This is in contrast to the independent channel arrangement of the embodiment of
Actuation of a barrel between various positions can be accomplished in various manners. By way of example, trunnions, arms, and/or synchronization rings can be used, with actuation occurring either internal or external to the engine casing. As another example, a gear-driven arrangement can be used. In some embodiments, a barrel can be mounted to a vane assembly, in which the vane associated with the barrel can be either stationary or moveable.
It should be emphasized that the above-described embodiments are merely possible examples of implementations set forth for a clear understanding of the principles of this disclosure. Many variations and modifications may be made to the above-described embodiments without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
2545010 | Stalker | Mar 1951 | A |
2852211 | Xenakis | Sep 1958 | A |
4740138 | Zaehring et al. | Apr 1988 | A |
4856962 | McDow | Aug 1989 | A |
5209438 | Wygnanski | May 1993 | A |
5314301 | Knight | May 1994 | A |
5332357 | Tubbs | Jul 1994 | A |
5520511 | Loudet et al. | May 1996 | A |
5549448 | Langston | Aug 1996 | A |
5601401 | Matheny et al. | Feb 1997 | A |
5931636 | Savage et al. | Aug 1999 | A |
6033180 | Machida | Mar 2000 | A |
6203269 | Lorber et al. | Mar 2001 | B1 |
6267331 | Wygnanski et al. | Jul 2001 | B1 |
6461105 | Nicolson | Oct 2002 | B1 |
20070048126 | Schilling | Mar 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090142181 A1 | Jun 2009 | US |