The invention generally relates to a gas turbine engine that comprises a transition duct that is cooled with air from a compressor. More particularly, it relates to transitions comprising cooling channels in which those channels benefit in operational efficiency by pressure differences at the respective entry and exit ports of the cooling channels.
Gas turbine engines comprise a compressor section, a combustor section and a turbine section. Each of these sections comprises an inlet end and an outlet end, and intervening components may connect these sections. A combustor transition member, commonly referred to as a transition (and also referred to as a “transition duct” or “tail pipe” by some in the art) is mechanically coupled between the combustor section outlet end and the turbine section inlet end to direct a working gas from the combustor section into the turbine section. Conventional transitions may be of the solid wall type or interior cooling channel wall type, and the type with interior cooling channels includes those in which cooling air passes from the exterior to the interior (open-type cooling) and those in which cooling air does not enter the transition interior (closed-type cooling).
The working gas is produced by combusting an air/fuel mixture. A supply of compressed air, originating from the compressor section, is mixed with a fuel supply to create a combustible air/fuel mixture. The air/fuel mixture is combusted in the combustor to produce the high temperature and high pressure working gas. The working gas is ejected into the combustor transition member to change the working gas flow exiting the combustor from a generally cylindrical flow to a generally annular flow which is, in turn, directed into the first stage of the turbine section.
As those skilled in the art are aware, the maximum power output of a gas turbine is achieved by heating the gas flowing through the combustion section to as high a temperature as is feasible. The hot working gas, however, may produce combustor section, transition, and turbine section component metal temperatures that exceed the maximum operating rating of the alloys from which the combustor section and turbine section are made. This, in turn, may induce premature stress and cracking along various components, such as a transition. Additionally, it is appreciated that a balancing of performance and emissions is required under current environmental regulations. As to that balancing, any developments that improve both overall operational performance and overall emissions quality at reasonable cost would represent an advance in the art.
Generally, transition cooling may be effectuated fully or partially by any of the following known approaches, which represents a non-exclusive list: closed circuit steam cooling (i.e., see for one example U.S. Pat. No. 5,906,093); open cooling (in which a portion of the compressed air passes through channels in the transition and then enters the flow of combusted gases within the transition, see for one example U.S. Pat. No. 3,652,181); convection cooling (see for one example U.S. Pat. No. 4,903,477); effusion cooling (i.e., conveying air from outside the transition through angled holes into the transition); and impingement cooling (where air is directed at the transition exterior walls through apertures positioned on plates or other structures close to these walls, see U.S. Pat. No. 4,719,748 for one example). It also is noted that some of these approaches may be used in combination with one another. For example, one part of a transition may be cooled by impingement cooling, and a second part of the same transition may be cooled by a convection cooling approach.
Notwithstanding the features of current cooling approaches, when compressor air is desired to cool the transition, there is a need for appropriately designed transition cooling that additionally may benefit emissions by replacing open cooling systems. As disclosed in the following sections, the present invention provides a transition with a cooling system that is effective to achieve improved levels of cooling efficiency and may eliminate a need for open cooling systems. That is, the present invention advances the art by solving the potentially conflicting issues of cooling of transitions, conservation of fluid flow to the combustion chambers, and combustion efficiency in the transition.
The invention is explained in following description in view of the drawings that show:
The present invention addresses the problem of cooling a gas turbine engine transition with an approach that balances operational efficiency and emissions quality. This is achieved by providing cooling channels in the transition that take advantage of the relative pressure differences along the outer surface of the transition, such as between the inboard side and the lateral sides, or between the lateral sides and the outboard side of the transition. Thus, the present invention is directed to transitions that comprise interior cooling channels in their walls for passage of compressed air, as opposed to solid-wall types or steam-cooled types.
Further regarding transitions with cooling channels for passage of a cooling fluid, among the previous approaches are those designed so that compressed air enters such channels from the exterior of the transition, passes through the channels, and then exits the channels into the interior of the transition. This was believed to provide a desired additional cooling effect for the inner surface of the transition, by virtue of establishing a close layer of relatively cooler air that came from the channels, and that cooled the inner surface. However, the present inventors have appreciated the negative impact of this approach as such approach relates to obtaining desirable combustion efficiency and consequent emissions. Particularly, the present inventors have appreciated that concomitant with such cooling of the inner surface of the transition there is a potential loss of combustion efficiency. This is because the decreased inner surface temperature results in decreased percentage of combustion in the transition, resulting in more released carbon monoxide.
Thus, a more desired approach effectively cools the entire transition without overcooling the interior surface with open cooling. Also, when compressed air is not diverted to the interior of the transition through cooling channels, a greater percentage of compressed air from the compressor may enter the combustion chambers' intakes and thereby be utilizable for combustion with fuel as these mix and are combusted. Among other advantages, this helps NOx emissions by lowering the flame temperature.
The present invention provides a channel-based transition cooling system in which the relative positions of specific channel entrances and channel exits provide for cooling fluid flow (through the channels) and consequent increased cooling efficiencies. These are due to relative pressure differences at a respective entry port and a corresponding exit port. Various embodiments of the present invention benefit from local pressure differences in the space, i.e., the plenum, in which a respective transition is located, through which compressed air from the compressor is passing en route to intakes of combustion chambers. The channeled cooling systems of such latter embodiments are ‘closed,’ i.e., they do not direct air from the channels into the transition interior space (which is referred to functionally as a working gas flow channel).
An example of this is best disclosed by reference to the figures. First, to depict the general art,
Various embodiments of the present invention provide for channel cooling that takes advantage of pressure differentials such as those depicted in
For providing cooling air through the transition, the following lower and upper channels are provided. A lower channel 213R in the bottom half 202 extends from a lower entry port 212R disposed along the inboard side 210, at a point of relative higher pressure, to a lower exit port 214R disposed along lateral side 232R at a point of relative lower pressure. A similar lower channel 213L extends from an entry port 212L, adjacent entry port 212R, and passes to an exit port 214L disposed along the left lateral side 232L. The same pattern may apply to other channels connecting the lower entry ports and lower exit ports in
Thus, a plurality of generally parallel lower channels 213R and 213L are effective to provide closed cooling to a portion of the lower half 202 of transition wall 201 by the passage of air through the channels 213R and 213L. This passage of air is driven by the relative pressure differential between the entry ports 212R and 212L and their respective exit ports 214R and 214L.
Similarly, a plurality of left and right upper channels 223L and 223R provides cooling of a portion of the top half 204. Only one of each side is shown in
One range of a favorable pressure differential between an entry port 222L or 222R compared to a corresponding exit port 224L or 224R is about one to two percentage of the total pressure increase effectuated by the compressor.
Alternatively, two or more cooling channels may have a common entry port and/or a common exit port, and the positioning of such common ports may be advantageous to obtaining a desired pressure difference and resultant increased flow of cooling fluid (i.e., compressed air) through the cooling channels. For example, instead of having four exit ports 224R on the right side in
It is readily appreciated that better cooling is achieved in the top half 204 by offsetting the upper entry ports 222L and 222R laterally from the nearby lower exit ports 214L and 214R, so that heated air from the lower exit ports 214L and 214R does not enter any of the upper entry ports 222L and 222R. The desired off-setting of these exit and entrance ports may depend on the overall flow characteristics of the air space (plenum), as lateral air flows, such as from downstream to upstream ends of the transition, may occur. One example of this is depicted in
It is appreciated that at points P1, P2, P5, and P6 the angle of the direction of the flow paths are acute relative to the longitudinal axis 305 (and generally to weld seam 309). In contrast, the angle of the direction of the flow paths at points P3 and P4 are substantially perpendicular to that axis 305 and weld seam 309. These local airflow path relationships help determine the appropriate positioning of scoops 330a-h and respective corresponding entry ports (not shown) disposed underneath the scoops 330a-h relative to exit ports 340a-h along the transition 300, so as to minimize or eliminate intake of heated airflow from an exit port 340 into a nearby scoop 330. More generally, this is meant to avoid, or substantially minimize, contamination with an already-heated cooling fluid from an exit port. Based on the angle of the direction of the flow paths, a particular scoop 330a may be positioned directly above an exit port 340a (with respect to an axis 340 perpendicular to a weld seam 309), yet may receive airflow substantially uncontaminated with air exiting that exit port 340a. In contrast, for scoops 330d and 330e, the positioning is offset between and above (relative to weld seam 309) exit ports 340d, 340e and 340f. Despite the variation in angles, shown in
More generally, for such relative positioning, it is appreciated that in various embodiments the scoops and corresponding entry ports therein are offset from respective paths of local prevailing airflow from downstream-positioned exit ports. This positioning is based on a local prevailing airflow direction along the lateral side of a transition. Some such scoops may be offset positionally along a transition, between and above nearby exit ports, such as is depicted for scoops 330d and 330e in
Thus, the present invention utilizes pressure distribution within a plenum surrounding a transition in order to provide improved and efficient flow through cooling channels within the walls of a transition. These channels are arranged to take advantage of such pressure differentials.
The examples above are not meant to be limiting as to the relative positions of a particular entry port and a corresponding exit port. For example, a channel in a transition that does not have a weld seam along its lateral sides may have an entry port (with or without a scoop) on the transition inboard side and its corresponding exit port on the outboard side. This is depicted in
Thus, a scooped opening (i.e., an entry port associated with a deflective member that deflects air into the entry port) on a transition may be associated with a cooling channel not limited to a top half as shown in
It is further appreciated that the design of a diffuser, as well as of components in the plenum, may affect the overall airflow across different areas (i.e., forward, middle, and aft) of a transition, and also may affect the relative pressure differentials among the inboard, lateral and outboard sides at these different areas. Accordingly, the extent to which the cooling channels as taught herein will be applied to transition areas will depend on the relative pressure differentials and on cost-benefit analyses comparing the cooling channels of the present invention (whether to be provided in an area of favorable, less favorable, or no favorable pressure differentials) with other cooling structures and methods. Part of this analysis should include the benefit to combustion efficiency, and emissions, by not introducing cooling air to the transition interior space where that air may overly cool surfaces that would otherwise advance the combustion of yet-uncombusted fuels and thereby reduce carbon monoxide emissions.
Thus, it is appreciated that other cooling methods, as known in the art, may be combined with the present invention. For example, not to be limiting, the most effective use of the present cooling system may be along a middle section of the transition because this is where the greatest pressure differences may exist between the inboard, lateral and outboard sides. If the channels of the present invention are only provided in such middle section, other cooling approaches would be implemented at the fore end and the aft end of the transition. Such supplemental cooling approaches may be any of those known in the art, including those referred to above.
Also, embodiments of the present invention may include gas turbine engines, such as depicted in
The specific embodiment depicted with regard to
Further, and more generally, a transition wall (such as 201, above) may be comprised of components fabricated in various manners, and accordingly may comprise a variety of layers. For example, not to be limiting, U.S. Pat. Nos. 3,652,181, 5,906,093, and 6,602,053, discuss and disclose various types of panel-type structures that may be applied to transitions. Further as to the present invention, a transition wall may be comprised of a single metal sheet into which are formed cooling channels according to the present invention. Alternatively, a transition wall may be comprised of an outer wall structure and an inner wall structure, bonded together, having cooling channels formed between, or having cooling channels formed in one of the outer wall or the inner wall structures prior to bonding together. Other variations are also known and may be applied to embodiments of the present invention. As used herein, a transition wall may be formed by any method known to those skilled in the art, and the cooling channels described and claimed herein may be formed by any method known to those skilled in the art so long as these cooling channels, upon completion of the transition, are within the transition wall, extending between the respective entry and exit ports.
U.S. Pat. No. 6,602,053 is specifically incorporated by reference for its teachings of methods of formation of forming cooling features on a turbine component such as a transition. As to the general teachings of components of transitions, the following references are of interest: U.S. Pat. Nos. 6,463,742; 6,662,568; and U.S. patent application Ser. No. 11/117,051, filed Mar. 28, 2005, and titled Gas Turbine Combustor Barrier Structure for Spring Clips. These and all other patents, patent applications, patent publications, and other publications referenced herein are hereby incorporated by reference in this application in order to more fully describe the state of the art to which the present invention pertains, to provide such teachings as are generally known to those skilled in the art.
While various embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions may be made without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3064425 | Hayes | Nov 1962 | A |
3652181 | Wilhelm, Jr. | Mar 1972 | A |
4339925 | Eggmann et al. | Jul 1982 | A |
4719748 | Davis, Jr. et al. | Jan 1988 | A |
4872312 | Iizuka et al. | Oct 1989 | A |
4903477 | Butt | Feb 1990 | A |
5490388 | Althaus et al. | Feb 1996 | A |
5581994 | Reiss et al. | Dec 1996 | A |
5906093 | Coslow et al. | May 1999 | A |
6000908 | Bunker | Dec 1999 | A |
6018950 | Moeller | Feb 2000 | A |
6116013 | Moeller | Sep 2000 | A |
6282905 | Sato et al. | Sep 2001 | B1 |
6412268 | Cromer et al. | Jul 2002 | B1 |
6463742 | Mandai et al. | Oct 2002 | B2 |
6484505 | Brown et al. | Nov 2002 | B1 |
6494044 | Bland | Dec 2002 | B1 |
6536201 | Stuttaford et al. | Mar 2003 | B2 |
6568187 | Jorgensen et al. | May 2003 | B1 |
6602053 | Subramanian et al. | Aug 2003 | B2 |
6615588 | Hoecker | Sep 2003 | B2 |
6640547 | Leahy, Jr. | Nov 2003 | B2 |
6662568 | Shimizu et al. | Dec 2003 | B2 |
6684620 | Tiemann | Feb 2004 | B2 |
6890148 | Nordlund | May 2005 | B2 |
7310938 | Marcum et al. | Dec 2007 | B2 |
20010004835 | Alkabie et al. | Jun 2001 | A1 |
20020189260 | David et al. | Dec 2002 | A1 |
20030167776 | Coppola | Sep 2003 | A1 |
20040118123 | Tiemann | Jun 2004 | A1 |
20090145099 | Jennings et al. | Jun 2009 | A1 |
20090249791 | Belsom | Oct 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20070180827 A1 | Aug 2007 | US |