The present invention generally relates to gas turbine engine flow components, and more particularly, but not exclusively, to gas turbine engine flow components having variable geometry.
Providing variable geometry capabilities to gas turbine engine flow components remains an area of interest. Some existing systems have various shortcomings relative to certain applications. Accordingly, there remains a need for further contributions in this area of technology.
One embodiment of the present invention is a unique gas turbine engine flow component. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for varying the geometry of a gas turbine engine flow component. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
With reference to
The gas turbine engine 50 includes turbomachinery components such as a compressor 52 and turbine 54 that are used to change a pressure of working fluid flowing therethrough in the production of useful power as will be appreciated. The turbomachinery components can include a variety of devices such as vanes and blades that can be used to influence the flow of the working fluid. In operation, the compressor 52 receives and compresses a working fluid whereupon it is delivered to a combustor 56 and mixed with a fuel. The combustor 56 is used to combust a mixture of working fluid and fuel and deliver a flow of products of combustion to the turbine 54. The flow of products of combustion are thereafter expanded in the turbine 54 and work is extracted to provide power, such as mechanical and electrical power.
The gas turbine engine 50 can take any variety of forms. For example, though the gas turbine engine 50 is shown as a turbojet in the illustrated embodiment, in other embodiments the gas turbine engine 50 can be a turboprop, turboshaft, or turbofan engine. In some forms the gas turbine engine 50 can be an adaptive and/or variable cycle engine. In short, any number of variations are contemplated herein for the gas turbine engine 50.
Turning now to
Also shown disclosed in
The movable vane segment 64 includes a bluff forebody 72 that extends forward of the vane body 60 and a narrow trailing edge 74 that resides next to a location aft of the leading edge of the vane body 62; however, it will be appreciated that not all embodiments of movable vane segment 64 need include the same configuration as depicted in
The movable vane segment 66 includes a forward end 80 as well as an aft end 82 that extends past the main body 60 in the top position and is in close proximity to a trailing edge of the vane body 62 in the bottom position. Similar to the variations described above with regard to movable vane segment 64, the movable vane segment 66 can have any of various configurations and other embodiments relative to the illustrated embodiment shown in
Although the embodiment illustrated in
The rings 68 and 70 can be actuated using any variety of techniques and furthermore can have any variety of configurations relative to the depiction shown in
The ring 68 includes an axially forward end 88 that extends axially forward of bluff forebody 72 and an axially aft end 90 that extends axially aft of the aft end of movable vane segment 64. In other embodiments the ring 68 can extend to locations other than those depicted in
The ring 70 includes an axially forward end 92 that extends axially forward of forward end 80 and an axially aft end 94 that extends axially aft of the aft end 82. In other embodiments the ring 70 can extend to locations other than those depicted in
The rings 68 and 70 are movable relative to a base 96 to which, in some embodiments, the vane bodies 60 and 62 can be coupled. The base 96 can be a casing of the gas turbine engine 50, among other possible structures. In some forms one or more seals can be disposed at the interface between ring 68 and base 96 and or at the interface between ring 70 and base 96. Such seals can take the form of circumferential ring seals, among other possibilities.
Turning now to
The inner ring 68 can represent an inner flow path surface through the component 58 and the outer ring 68 can represent an outer flow path surface through the component 58. Accordingly, as can be seen in
The movable vane segment 64 can have any variety of shapes along its span as it extends between the inner ring 68 and outer ring 68. For example, the shape of the bluff forebody 72 can change as a function of the span, the chord length of the movable vane segment 64 can likewise change as a function of span, among other possible variations. Thus, the movable vane segment 64 can extend along the entirety of the span of the vane bodies 60 and 62, but given variations in the shape of the movable vane segment 64, the effect of the movable vane segment 64 may vary substantially between the inner flow path location of the vane bodies 60 and 62 in the outer flow path location of the vane bodies 60 and 62. For example, in some span locations the movable vane segment 64 can have substantially minimal impact.
The movable vane segment 66 extends between an inner ring 70 and an outer ring 70. The movable vane segment 66 can be affixed to both the inner ring 70 and the outer ring 70 such that the movable vane segment 66 does not move relative to either the inner ring 70 or outer ring 70. In some forms the movable vane segment 66 can be integrally formed with the inner ring 70 and outer ring 70, but in other forms the movable vane segment 66 can be coupled to one or both of the inner ring 70 and outer ring 70 through mechanical, metallurgic, etc. techniques. In still additional and/or alternative embodiments, one of the inner ring 70 and outer ring 70 may be eliminated, such that the movable vane segment 66 is supported as a cantilever from the remaining inner ring 70 or outer ring 70.
The inner ring 70 can represent an inner flow path surface through the component 58 and the outer ring 70 can represent an outer flow path surface through the component 58. Accordingly, as can be seen in
The movable vane segment 66 can have any variety of shapes along its span as extends between the inner ring 70 and outer ring 70. For example, the thickness of the movable vane segment 66 can change as a function of the span, the chord length of the movable vane segment 66 can likewise change as a function of span, among other possible variations. Thus, the movable vane segment 66 can extend along the entirety of the span of the vane bodies 60 and 62, but given variations in the shape of the moveable vane segment 66, the effect of the movable vane segment 66 may vary substantially between the inner flow path location of the vane bodies 60 and 62 and the outer flow path location of the vane bodies 60 and 62. For example, in some span locations the movable vane segment 66 can have substantially minimal impact.
As shown in
Among the many variations of either ring 68 or ring 70, a segmented structure can be provided that when integrated provides for the function as described herein. For example, the radially extending movable vane segments 64 and 66 can radiate from an interior location closer to the center of the shape as depicted in
Furthermore, although separate rings 68 and 70 are depicted in the illustrated embodiment, it will be appreciated that in some applications the structure that is used to actuate the movable vane segments 64 and 66 can be a single ring structure. For example, one non-limiting form includes the movable vane segment 64 and movable vane segment 66 supported from a single ring whether that single ring is the ring 68 or ring 70. In this non-limiting embodiment, it will be appreciated that the ring used to support both the movable vane segment 64 and movable vane segment 66 may have a configuration other than that that disclosed in
Turning now to
The passages 98, 100, and 102 are just a few of any variations of similar passages. For example, any passage provided in the movable vane segment 64, movable vane segment 66, vane body 60, or vane body 62, whether or not similar to passages 98, 100, and 102, can have any of various cross-sectional geometries, lengths, shapes of passages, etc. Furthermore, any passages provided can be distributed along the span of any of the devices to which the passages are associated. The passages can be holes, slots, etc. as will be appreciated.
Working fluid suitable for discharge through any of cooling passages 100 and 102 can originate from any suitable location. For example, the working fluid can be a cooled cooling air that is created from compressor discharge air that has been cooled through a suitable heat exchanger.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the inventions are desired to be protected. It should be understood that while the use of words such as preferable, preferably, preferred or more preferred utilized in the description above indicate that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the invention, the scope being defined by the claims that follow. In reading the claims, it is intended that when words such as “a,” “an,” “at least one,” or “at least one portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/769,619, filed 26 Feb. 2013, the disclosure of which is now expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2314572 | Chitz | Mar 1943 | A |
2351516 | Jandasek | Jun 1944 | A |
2755628 | Mamo | Jul 1956 | A |
3162421 | Gottfried | Dec 1964 | A |
3442493 | Smith | May 1969 | A |
3723021 | Bartholomew | Mar 1973 | A |
3756739 | Boussuges | Sep 1973 | A |
3887297 | Welchek | Jun 1975 | A |
4053256 | Hertel | Oct 1977 | A |
4183209 | Kronogard | Jan 1980 | A |
4512718 | Stargardter | Apr 1985 | A |
4705452 | Karadimas | Nov 1987 | A |
4995786 | Wheeler et al. | Feb 1991 | A |
5314301 | Knight | May 1994 | A |
5372485 | Sumser | Dec 1994 | A |
5520511 | Loudet et al. | May 1996 | A |
6099245 | Bunker | Aug 2000 | A |
6179559 | Weaver | Jan 2001 | B1 |
6715983 | Koshoffer | Apr 2004 | B2 |
6993903 | Shin | Feb 2006 | B2 |
7114911 | Martin et al. | Oct 2006 | B2 |
7444802 | Parry | Nov 2008 | B2 |
7632064 | Somanath et al. | Dec 2009 | B2 |
20010036401 | Harvey et al. | Nov 2001 | A1 |
20050244265 | Dailey et al. | Nov 2005 | A1 |
20090016871 | McCaffrey | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
1118747 | Jul 2001 | EP |
1122407 | Aug 2001 | EP |
2014871 | Jan 2009 | EP |
1378346 | Dec 1974 | GB |
2008155243 | Dec 2008 | WO |
Entry |
---|
International Search Report for PCT International Application Serial No. PCT/US2013/071901, completed Jul. 22, 2014, (17 pages). |
Number | Date | Country | |
---|---|---|---|
20140237987 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61769619 | Feb 2013 | US |