Turbine engines, and particularly gas or combustion turbine engines, are rotary engines that extract energy from a flow of combusted gases passing through a fan with a plurality of blades, then into the engine through a series of compressor stages, which include pairs of rotating blades and stationary vanes, through a combustor, and then through a series of turbine stages, also consisting of rotating blades and stationary vanes.
In operation, turbine engines operate at increasingly hotter temperatures as the gasses flow from the compressor stages to the turbine stages. Various cooling circuits for the components exhaust to the main flowpath and must be provided with cooling air at sufficient pressure to prevent ingestion of the hot gases therein during operation.
For example, seals are provided between the stationary turbine nozzles and the rotating turbine blades to prevent ingestion or backflow of the hot gases into the cooling circuits. Improving the ability of these seals to prevent ingestion or backflow increases engine performance and efficiency.
In one aspect, embodiments relate to a gas turbine engine comprising a rotor having at least one disk with circumferentially spaced blades, a stator having at least one ring with circumferentially spaced vanes, with the rings being adjacent the disk, a recess formed in one of the disk and ring to define a buffer cavity, a wing extending into the recess from the other of the disk and ring and defining a labyrinth fluid path through the buffer cavity. At least one set of protuberances including a recess protuberance extend from the recess into the buffer cavity and a wing protuberance extends from the wing into the buffer cavity.
In another aspect, embodiments relate to a rim seal between a rotor and a stator of a gas turbine engine comprising a recess formed in one of the rotor and stator to define a buffer cavity, a wing extending from the other of the rotor and stator into the recess to define a labyrinth fluid path through the buffer cavity, and at least one set of protuberances including a recess protuberance extending from the recess into the buffer cavity and a wing protuberance extending from the wing into the buffer cavity.
In yet another aspect, embodiments relate to a rim seal for gas turbine engine comprising a wing extending into a buffer cavity with at least one set of protuberances including a first protuberance extending into the buffer cavity and a second protuberance extending from the wing into the buffer cavity, with the first and second protuberances being axially spaced from each other.
In the drawings:
The described embodiments of the present invention are directed to a rim seal between a rotor and stator portion of a turbine section in a gas turbine engine. For purposes of illustration, the present invention will be described with respect to the turbine for an aircraft gas turbine engine. It will be understood, however, that the invention is not so limited and may have general applicability to engine sections beyond the turbine and to non-aircraft applications, such as other mobile applications and non-mobile industrial, commercial, and residential applications.
The fan section 18 includes a fan casing 40 surrounding the fan 20. The fan 20 includes a plurality of fan blades 42 disposed radially about the centerline 12. The HP compressor 26, the combustor 30, and the HP turbine 34 form a core 44 of the engine 10, which generates combustion gases. The core 44 is surrounded by core casing 46, which can be coupled with the fan casing 40.
A HP shaft or spool 48 disposed coaxially about the centerline 12 of the engine 10 drivingly connects the HP turbine 34 to the HP compressor 26. A LP shaft or spool 50, which is disposed coaxially about the centerline 12 of the engine 10 within the larger diameter annular HP spool 48, drivingly connects the LP turbine 36 to the LP compressor 24 and fan 20.
The LP compressor 24 and the HP compressor 26 respectively include a plurality of compressor stages 52, 54, in which a set of compressor blades 56, 58 rotate relative to a corresponding set of static compressor vanes 60, 62 (also called a nozzle) to compress or pressurize the stream of fluid passing through the stage. In a single compressor stage 52, 54, multiple compressor blades 56, 58 can be provided in a ring and can extend radially outwardly relative to the centerline 12, from a blade platform to a blade tip, while the corresponding static compressor vanes 60, 62 are positioned upstream of and adjacent to the rotating blades 56, 58. It is noted that the number of blades, vanes, and compressor stages shown in
The blades 56, 58 for a stage of the compressor can be mounted to a disk 59, which is mounted to the corresponding one of the HP and LP spools 48, 50, with each stage having its own disk 59, 61. The vanes 60, 62 for a stage of the compressor can be mounted to the core casing 46 in a circumferential arrangement.
The HP turbine 34 and the LP turbine 36 respectively include a plurality of turbine stages 64, 66, in which a set of turbine blades 68, 70 are rotated relative to a corresponding set of static turbine vanes 72, 74 (also called a nozzle) to extract energy from the stream of fluid passing through the stage. In a single turbine stage 64, 66, multiple turbine vanes 72, 74 can be provided in a ring and can extend radially outwardly relative to the centerline 12, while the corresponding rotating blades 68, 70 are positioned downstream of and adjacent to the static turbine vanes 72, 74 and can also extend radially outwardly relative to the centerline 12, from a blade platform to a blade tip. It is noted that the number of blades, vanes, and turbine stages shown in
The blades 68, 70 for a stage of the turbine can be mounted to a disk 71, which is mounted to the corresponding one of the HP and LP spools 48, 50, with each stage having its own disk 71, 73. The vanes 72, 74 for a stage of the compressor can be mounted to the core casing 46 in a circumferential arrangement.
The portions of the engine 10 mounted to and rotating with either or both of the spools 48, 50 are also referred to individually or collectively as a rotor 53. The stationary portions of the engine 10 including portions mounted to the core casing 46 are also referred to individually or collectively as a stator 63.
In operation, the airflow exiting the fan section 18 is split such that a portion of the airflow is channeled into the LP compressor 24, which then supplies pressurized ambient air 76 to the HP compressor 26, which further pressurizes the ambient air. The pressurized air 76 from the HP compressor 26 is mixed with fuel in the combustor 30 and ignited, thereby generating combustion gases. Some work is extracted from these gases by the HP turbine 34, which drives the HP compressor 26. The combustion gases are discharged into the LP turbine 36, which extracts additional work to drive the LP compressor 24, and the exhaust gas is ultimately discharged from the engine 10 via the exhaust section 38. The driving of the LP turbine 36 drives the LP spool 50 to rotate the fan 20 and the LP compressor 24.
A remaining portion of the airflow 78 bypasses the LP compressor 24 and engine core 44 and exits the engine assembly 10 through a stationary vane row, and more particularly an outlet guide vane assembly 80, comprising a plurality of airfoil guide vanes 82, at the fan exhaust side 84. More specifically, a circumferential row of radially extending airfoil guide vanes 82 are utilized adjacent the fan section 18 to exert some directional control of the airflow 78.
Some of the ambient air supplied by the fan 20 can bypass the engine core 44 and be used for cooling of portions, especially hot portions, of the engine 10, and/or used to cool or power other aspects of the aircraft. In the context of a turbine engine, the hot portions of the engine are normally the combustor 30 and components downstream of the combustor 30, especially the turbine section 32, with the HP turbine 34 being the hottest portion as it is directly downstream of the combustion section 28. Other sources of cooling fluid can be, but is not limited to, fluid discharged from the LP compressor 24 or the HP compressor 26. This fluid can be bleed air 77 which can include air drawn from the LP or HP compressors 24, 26 that bypasses the combustor 30 as cooling sources for the turbine section 32. This is a common engine configuration, not meant to be limiting.
The stator 63 includes at least one ring 100 with circumferentially spaced vanes 72. The ring 100 is adjacent the disk 71 and form a rim seal 102 between the rotor 53 and stator 63. A radial seal 104 can mount to a stator disk 106 adjacent to the ring 100. Each vane 72 is radially spaced apart from each other to at least partially define a path for a mainstream airflow M.
The mainstream airflow M moves in a forward 14 to aft 16 direction, driven by the blades 68. The rim seal 102 and radial seal 104 can have leak paths through which some airflow from the mainstream airflow M can leak in a direction opposite of the mainstream airflow M causing unwanted heating of portions of the rotor 53 and stator 63. A labyrinth fluid path 108 extends between the ring 100 and the disk 71 and is used to counteract the heating of these portions.
Turning to
At least one set of protuberances 116 extends radially into the buffer cavity 112. Each set 116 comprises a first, or recess, protuberance 118 extending from the recess 110 and a second, or wing, protuberance 120 extending from the wing 114. The protuberance 118, 120 radial extent is less than the radial tolerances between the disk 71 and the ring 100 so as to leave appropriate clearance between the wing 114 and recess 110 surfaces. Each protuberance 118, 120 is axially spaced from each other with a spacing that is greater than the axial tolerances between the disk 71 and the ring 100. The radial and axial tolerances are determined in order to maintain an appropriate clearance to account for radial and axial thermal expansion of engine parts due to variations in temperature.
In an exemplary embodiment illustrated in
Other embodiments of a rim seal with sets of protuberances are contemplated in
In another exemplary embodiment shown in
A fourth embodiment contemplated in
Benefits to including at least one set of protuberances in the rim seal include resisting hot gas ingestion from the mainstream flow. Protuberances create additional cavities for vortex interruption of ingestion flow and the positioning of sets of protuberances can be optimized for engines where fine control of radial and axial transient clearances is optimized throughout engine operation.
The configurations described herein enable sealing at multiple operating points. These configurations prevent hot gas from ingesting past the buffer cavity where it can be detrimental to portions of the rotor and stator. Preventing hot gas from ingesting also allows for less purge flow and therefore improved specific fuel consumption (SFC).
It should be appreciated that application of the disclosed design is not limited to turbine engines with fan and booster sections, but is applicable to turbojets and turbo engines as well.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4218189 | Pask | Aug 1980 | A |
5222742 | Roberts | Jun 1993 | A |
6506016 | Wang | Jan 2003 | B1 |
6779972 | Farrell et al. | Aug 2004 | B2 |
8834122 | Ingram | Sep 2014 | B2 |
8864452 | Tham et al. | Oct 2014 | B2 |
8926283 | Lee et al. | Jan 2015 | B2 |
8979481 | Ingram | Mar 2015 | B2 |
20060275106 | Alvanos | Dec 2006 | A1 |
20060275108 | Memmen et al. | Dec 2006 | A1 |
20080145208 | Klasing et al. | Jun 2008 | A1 |
20090280011 | Tibbott | Nov 2009 | A1 |
20100074733 | Little | Mar 2010 | A1 |
20120251291 | Ledezma et al. | Oct 2012 | A1 |
20130051992 | Diakunchak | Feb 2013 | A1 |
20130200571 | Mutou et al. | Aug 2013 | A1 |
20140193243 | Nallam | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
104632292 | May 2015 | CN |
1 731 717 | Dec 2006 | EP |
1 731 718 | Dec 2006 | EP |
Entry |
---|
Extended European Search Report and Opinion issued in connection with corresponding EP Application No. 7154886.0 dated Jun. 22, 2017. |
First Office Action and Search issued in connection with corresponding CN Application No. 201710073805.2 dated Jun. 22, 2018. |
Number | Date | Country | |
---|---|---|---|
20170226884 A1 | Aug 2017 | US |