The present invention relates to a gas turbine engine, and more particularly to a turbofan engine having a fan variable area nozzle (FVAN) which selectively opens vents through a fan nacelle to change a bypass flow path area thereof.
Conventional gas turbine engines generally include a fan section and a core engine with the fan section having a larger diameter than that of the core engine. The fan section and the core engine are disposed about a longitudinal axis and are enclosed within an engine nacelle assembly.
Combustion gases are discharged from the core engine through a core exhaust nozzle while an annular fan flow, disposed radially outward of the primary airflow path, is discharged through an annular fan exhaust nozzle defined between a fan nacelle and a core nacelle. A majority of thrust is produced by the pressurized fan air discharged through the fan exhaust nozzle, the remaining thrust being provided from the combustion gases discharged through the core exhaust nozzle.
The fan nozzles of conventional gas turbine engines have a fixed geometry. The fixed geometry fan nozzles are a compromise suitable for take-off and landing conditions as well as for cruise conditions. Some gas turbine engines have implemented fan variable area nozzles. The fan variable area nozzle provide a smaller fan exit nozzle diameter during cruise conditions and a larger fan exit nozzle diameter during take-off and landing conditions. Existing fan variable area nozzles typically utilize relatively complex mechanisms that increase overall engine weight to the extent that the increased fuel efficiency therefrom may be negated.
Accordingly, it is desirable to provide an effective, lightweight fan variable area nozzle for a gas turbine engine.
A turbofan engine according to the present invention includes a fan variable area nozzle having a multiple of vents through a fan nacelle. Rotatable elements are rotatable within the vents by an actuator system. The vents selectively change the effective fan nozzle exit area to permit efficient operation at predefined flight conditions. The vents are closed to define a nominal fan nozzle exit area and are opened during other flight conditions such as landing and takeoff.
The present invention therefore provides an effective, lightweight fan variable area nozzle for a gas turbine engine.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows:
The turbofan engine 10 includes a core section within a core nacelle 12 that houses a low spool 14 and high spool 24. The low spool 14 includes a low pressure compressor 16 and low pressure turbine 18. The low spool 14 drives a fan section 20 directly or through a gear train 22. The high spool 24 includes a high pressure compressor 26 and high pressure turbine 28. A combustor 30 is arranged between the high pressure compressor 26 and high pressure turbine 28. The low and high spools 14, 24 rotate about an engine axis of rotation A.
The engine 10 in the disclosed embodiment is a high-bypass geared turbofan aircraft engine in which the engine 10 bypass ratio is greater than ten (10), the turbofan diameter is significantly larger than that of the low pressure compressor 16, and the low pressure turbine 18 has a pressure ratio that is greater than five (5). The gear train 22 may be an epicycle gear train such as a planetary gear system or other gear system with a gear reduction ratio of greater than 2.5. It should be understood, however, that the above parameters are only exemplary of one geared turbofan engine and that the present invention is likewise applicable to other gas turbine engines including direct drive turbofans.
Airflow enters a fan nacelle 34, which at least partially surrounds the core nacelle 12. The fan section 20 communicates airflow into the core nacelle 12 for compression by the low pressure compressor 16 and the high pressure compressor 26. Core airflow compressed by the low pressure compressor 16 and the high pressure compressor 26 is mixed with the fuel in the combustor 30 and expanded over the high pressure turbine 28 and low pressure turbine 18. The turbines 28, 18 are coupled for rotation with respective spools 24, 14 to rotationally drive the compressors 26, 16 and through the gear train 22, the fan section 20 in response to the expansion. A core engine exhaust E exits the core nacelle 12 through a core nozzle 43 defined between the core nacelle 12 and a tail cone 32.
The core nacelle 12 is supported within the fan nacelle 34 by structure 36 often generically referred to as an upper and lower bifurcation. A bypass flow path 40 is defined between the core nacelle 12 and the fan nacelle 34. The engine 10 generates a high bypass flow arrangement with a bypass ratio in which approximately 80 percent of the airflow entering the fan nacelle 34 becomes bypass flow B. The bypass flow B communicates through the generally annular bypass flow path 40 and is discharged from the engine 10 through a fan variable area nozzle (FVAN) 42 which defines a nozzle exit area 44 between the fan nacelle 34 and the core nacelle 12 at a segment 34S of the fan nacelle 34 downstream of the fan section 20.
Thrust is a function of density, velocity, and area. One or more of these parameters can be manipulated to vary the amount and direction of thrust provided by the bypass flow B. The FVAN 42 includes a vent system 50 within the fan nacelle 34 to effectively vary the area of the fan nozzle exit area 44 and selectively adjust the pressure ratio of the bypass flow B in response to a controller C.
A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 20 of the engine 10 is preferably designed for a particular flight condition—typically cruise at 0.8 M and 35,000 feet. As the fan section 20 is efficiently designed at a particular fixed stagger angle for an efficient cruise condition, the vent system 50 is operated to effectively vary the fan nozzle exit area 44 to adjust fan bypass air flow such that the angle of attack or incidence on the fan blades is maintained close to the design incidence for efficient engine operation at other flight conditions, such as landing and takeoff. This provides optimized engine operation over a range of flight conditions with respect to performance and other operational parameters such as noise levels. The vent system 50 may provide an approximately 20% (twenty percent) change in area of the fan exit nozzle area 44. It should be understood that other arrangements as well as essentially infinite intermediate positions are likewise usable with the present invention.
Referring to
The bypass flow B is effectively altered by opening and closing the additional flow area provided by the vents 52. The vent system 50 changes the physical area and geometry of the bypass flow path 40 during particular flight conditions. For example only, the vents 52 are closed to define a nominal converged position for the fan nozzle exit area 44 during cruise and are opened for other flight conditions such as landing and takeoff.
Referring to
Referring to
In operation, the vent system 50 communicates with the controller C to rotate the valves 54 and effectively vary the fan nozzle exit area defined by the fan nozzle exit area 44. Other control systems including an engine controller or an aircraft flight control system may also be usable with the present invention. By adjusting the entire periphery of the FVAN 42 in which all segments are moved simultaneously, engine thrust and fuel economy are maximized during each flight regime by varying the fan nozzle exit area. By separately adjusting only particular valves 54 within the vent system 50 to provide an asymmetrical fan nozzle exit area 44, engine bypass flow is selectively vectored to provide, for example only, trim balance, thrust controlled maneuvering, enhanced ground operations and short field performance. The controller C may rotate the valves 54 to full open, full closed or to any intermediate position between full open and full closed.
The foregoing description is exemplary rather than defined by the limitations within. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
4044973 | Moorehead | Aug 1977 | A |
4086761 | Schaut et al. | May 1978 | A |
4147027 | Greathouse | Apr 1979 | A |
4205813 | Evans et al. | Jun 1980 | A |
4301980 | Bradfield et al. | Nov 1981 | A |
4410150 | Lahti | Oct 1983 | A |
4466587 | Dusa et al. | Aug 1984 | A |
4505443 | Bradfield et al. | Mar 1985 | A |
5315821 | Dunbar et al. | May 1994 | A |
5722231 | Porte | Mar 1998 | A |
5743488 | Rolston et al. | Apr 1998 | A |
5806302 | Cariola et al. | Sep 1998 | A |
6318070 | Rey et al. | Nov 2001 | B1 |
6439840 | Tse | Aug 2002 | B1 |
6505706 | Tse | Jan 2003 | B2 |
6543224 | Barooah | Apr 2003 | B1 |
6640537 | Tse | Nov 2003 | B2 |
6718752 | Nesbitt et al. | Apr 2004 | B2 |
6748744 | Peplow et al. | Jun 2004 | B2 |
6786038 | Lair | Sep 2004 | B2 |
6813877 | Birch et al. | Nov 2004 | B2 |
6820410 | Lair | Nov 2004 | B2 |
6983588 | Lair | Jan 2006 | B2 |
7000378 | Birch et al. | Feb 2006 | B2 |
7043898 | Rago | May 2006 | B2 |
7055329 | Martens et al. | Jun 2006 | B2 |
7093423 | Gowda et al. | Aug 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20090064659 A1 | Mar 2009 | US |