The present application relates to a gas turbine engine having an improved fuel consumption based upon a combination of operational parameters.
Gas turbine engines are known, and typically include a fan which drives air into a bypass duct, and also into a compressor section. The air is compressed in the compressor section, and delivered into a combustor section where it is mixed with fuel and burned. Products of this combustion pass downstream over turbine rotors, driving the turbine rotors to rotate.
In the past, a low pressure turbine has rotated at a given speed, and driven a low pressure compressor, and the fan at the same rate of speed. More recently, gear reductions have been included such that the fan in a low pressure compressor can be driven at different speeds.
In a featured embodiment, a gas turbine engine has a core section defined about an axis, a fan section delivering a first portion of air into the core section and a second portion of air into a bypass duct. A bypass ratio is defined as the ratio of the second portion compared to the first portion. The bypass ratio is greater than or equal to about 8.0. The air delivered into the core section is delivered into a low pressure compressor, and then into a high pressure compressor. Air from the high pressure compressor is delivered into a combustion section where it is mixed with fuel and ignited. Products of the combustion pass downstream over a high pressure turbine section and then a low pressure turbine section. An expansion ratio across the low pressure turbine section is greater than or equal to about 5.0. The low pressure turbine section drives the low pressure compressor section, and the fan through a gear reduction, with the gear reduction having a gear ratio greater than or equal to about 2.4.
In another embodiment according to the previous embodiment, the gear ratio is greater than or equal to about 2.5.
In another embodiment according to the previous embodiment, the gear ratio is less than or equal to about 4.2.
In another embodiment according to the previous embodiment, the expansion ratio is greater than or equal to about 5.7.
In another embodiment according to the previous embodiment, the bypass ratio is greater than or equal to 10.
In another embodiment according to the previous embodiment, the fan has an outer diameter that is greater than an outer diameter of the low pressure turbine section.
In another embodiment according to the previous embodiment, the gear reduction is greater than or equal to 2.4.
In another embodiment according to the previous embodiment, the gear reduction is less than or equal to 4.2.
In another embodiment according to the previous embodiment, the expansion ratio is greater than or equal to 5.0.
In another embodiment according to the previous embodiment, the bypass ratio is greater than or equal to 8.
In another featured embodiment, a method of operating a gas turbine engine includes the steps of driving a fan to deliver a first portion of air into a bypass duct and a second portion of air into a low pressure compressor. A bypass ratio of the first portion to the second portion is greater than or equal to 8.0. The first portion of air is delivered into the low pressure compressor, into a high pressure compressor, and then into a combustion section. The air is mixed with fuel and ignited. Products of the combustion pass downstream over a high pressure turbine, and then a low pressure turbine. The low pressure turbine section is operated with an expansion ratio greater than or equal to 5.0. The low pressure turbine section is driven to rotate, and in turn rotates the low pressure compressor and fan through a gear reduction. The gear reduction has a ratio of greater than or equal to 2.4.
In another embodiment according to the previous embodiment, the gear reduction is greater than or equal to 2.4.
In another embodiment according to the previous embodiment, the gear reduction is less than or equal to 4.2.
In another embodiment according to the previous embodiment, the expansion ratio is greater than or equal to 5.0.
In another embodiment according to the previous embodiment, the bypass ratio is greater than or equal to 8.
In another embodiment according to the previous embodiment, the fan has an outer diameter that is greater than an outer diameter of the low pressure turbine section.
In another featured embodiment, a gas turbine engine has a core section defined about an axis. A fan section is mounted at least partially around the core section to define a fan bypass flow path. A plurality of fan exit guide vanes are in communication with the fan bypass flow path and are rotatable about an axis of rotation to vary an effective fan nozzle exit area for the fan bypass flow path. The plurality of fan exit guide vanes are independently rotatable, and are simultaneously rotatable. The plurality of fan exit guide vanes are mounted within an intermediate engine case structure, with each including a pivotable portion rotatable about the axis of rotation relative a fixed portion. The pivotable portion includes a leading edge flap. A bypass ratio compares the air delivered by the fan section into a bypass duct to the amount of air delivered into the core section that is greater than 10, expansion ratio across a low pressure turbine section that is greater than 5, and the low pressure turbine section driving the fan section through a gear reduction, with the gear reduction having a ratio greater than 2.5.
In another embodiment according to the previous embodiment, a high pressure turbine is included. Each of the low pressure turbine and the high pressure turbine drive a compressor rotor of a compressor section.
In another embodiment according to any of the previous embodiments, the gear reduction is positioned intermediate the low pressure turbine and the compressor rotor is driven by the low pressure turbine.
In another embodiment according to any of the previous embodiments, there is also a high pressure turbine and an intermediate pressure turbine both driving compressor rotors.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows:
The turbofan engine 10 includes a core section within a core nacelle 12 that houses a low spool 14 and high spool 24. The low spool 14 includes a low pressure compressor 16 and low pressure turbine 18. The low spool 14 drives a fan section 20 directly or through a gear train 22. The high spool 24 includes a high pressure compressor 26 and high pressure turbine 28. A combustor 30 is arranged between the high pressure compressor 26 and high pressure turbine 28. The low and high spools 14, 24 rotate about an engine axis of rotation A.
The engine 10 in the disclosed embodiment is a high-bypass geared turbofan aircraft engine in which the engine 10 bypass ratio is greater than ten (10), the turbofan diameter is significantly larger than that of the low pressure compressor 16, and the low pressure turbine 18 has a pressure, or expansion, ratio greater than five (5). The gear train 22 may be an epicycle gear train such as a planetary gear system or other gear system with a gear reduction ratio of greater than 2.5. It should be understood, however, that the above parameters are exemplary of only one geared turbofan engine and that the present invention is likewise applicable to other gas turbine engines including direct drive turbofans.
Airflow enters a fan nacelle 34, which may at least partially surrounds the core nacelle 12. The fan section 20 communicates airflow into the core nacelle 12 for compression by the low pressure compressor 16 and the high pressure compressor 26. Core airflow compressed by the low pressure compressor 16 and the high pressure compressor 26 is mixed with the fuel in the combustor 30 then expanded over the high pressure turbine 28 and low pressure turbine 18. The turbines 28, 18 are coupled for rotation with respective spools 24, 14 to rotationally drive the compressors 26, 16 and, through the gear train 22, the fan section 20 in response to the expansion. A core engine exhaust E exits the core nacelle 12 through a core nozzle 43 defined between the core nacelle 12 and a tail cone 32.
A bypass flow path 40 is defined between the core nacelle 12 and the fan nacelle 34. The engine 10 generates a high bypass flow arrangement with a bypass ratio in which approximately 80 percent of the airflow entering the fan nacelle 34 becomes bypass flow B. The bypass flow B communicates through the generally annular bypass flow path 40 and may be discharged from the engine 10 through a fan variable area nozzle (FVAN) 42 which defines a variable fan nozzle exit area 44 between the fan nacelle 34 and the core nacelle 12 at an aft segment 34S of the fan nacelle 34 downstream of the fan section 20.
Referring to
Thrust is a function of density, velocity, and area. One or more of these parameters can be manipulated to vary the amount and direction of thrust provided by the bypass flow B. A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 20 of the engine 10 is nominally designed for a particular flight condition—typically cruise at 0.8M and 35,000 feet.
As the fan section 20 is efficiently designed at a particular fixed stagger angle for an efficient cruise condition, the FEGV system 36 and/or the FVAN 42 is operated to adjust fan bypass air flow such that the angle of attack or incidence of the fan blades is maintained close to the design incidence for efficient engine operation at other flight conditions, such as landing and takeoff. The FEGV system 36 and/or the FVAN 42 may be adjusted to selectively adjust the pressure ratio of the bypass flow B in response to a controller C. For example, increased mass flow during windmill or engine-out, and spoiling thrust at landing. Furthermore, the FEGV system 36 will facilitate and in some instances replace the FVAN 42, such as, for example, variable flow area is utilized to manage and optimize the fan operating lines which provides operability margin and allows the fan to be operated near peak efficiency which enables a low fan pressure-ratio and low fan tip speed design; and the variable area reduces noise by improving fan blade aerodynamics by varying blade incidence. The FEGV system 36 thereby provides optimized engine operation over a range of flight conditions with respect to performance and other operational parameters such as noise levels.
Referring to
Each fan exit guide vane 50 is mounted about a vane longitudinal axis of rotation 60. The vane axis of rotation 60 is typically transverse to the engine axis A, or at an angle to engine axis A. It should be understood that various support struts 61 or other such members may be located through the airfoil portion 52 to provide fixed support structure between the core engine case structure 46 and the fan case structure 48. The axis of rotation 60 may be located about the geometric center of gravity (CG) of the airfoil cross section. An actuator system 62 (illustrated schematically;
In operation, the FEGV system 36 communicates with the controller C to rotate the fan exit guide vanes 50 and effectively vary the fan nozzle exit area 44. Other control systems including an engine controller or an aircraft flight control system may also be usable with the present invention. Rotation of the fan exit guide vanes 50 between a nominal position and a rotated position selectively changes the fan bypass flow path 40. That is, both the throat area (
By adjusting the FEGV system 36 in which all the fan exit guide vanes 50 are moved simultaneously, engine thrust and fuel economy are maximized during each flight regime. By separately adjusting only particular fan exit guide vanes 50 to provide an asymmetrical fan bypass flow path 40, engine bypass flow may be selectively vectored to provide, for example only, trim balance, thrust controlled maneuvering, enhanced ground operations and short field performance.
Referring to
Referring to
The use of the gear reduction 22 allows control of a number of operational features in combination to achieve improved fuel efficiency. In one embodiment, the expansion ratio (or pressure ratio) across the low pressure turbine, which is the pressure entering the low pressure turbine section divided by the pressure leaving the low pressure turbine section was greater than or equal to about 5.0. In another embodiment, it was greater than or equal to about 5.7. In this same combination, the bypass ratio was greater than or equal to about 8.0. As mentioned earlier, in other embodiments, the bypass ratio may be greater than 10.0. In these same embodiments, the gear reduction ratio is greater than or equal to about 2.4 and less than or equal to about 4.2. Again, in embodiments, it is greater than 2.5.
This combination provides a low pressure turbine section that can be very compact, and sized for very high aerodynamic efficiency with a small number of stages (3 to 5 as an example). Further, the maximum diameter of these stages can be minimized to improve installation clearance under the wings of an aircraft.
The
The foregoing description is exemplary rather than defined by the limitations within. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.
This application is a continuation-in-part of U.S. application Ser. No. 13/361,987, filed Jan. 31, 2012, which is a continuation-in-part of U.S. patent application Ser. No. 11/829213, filed Jul. 17, 2007.
Number | Date | Country | |
---|---|---|---|
Parent | 13361987 | Jan 2012 | US |
Child | 14592043 | US | |
Parent | 11829213 | Jul 2007 | US |
Child | 13361987 | US |