The present disclosure relates generally to gas turbine engines, and more specifically to auxiliary electric power devices of gas turbine engines.
Gas turbine engines are used to power aircraft, watercraft, electrical generators, and the like. Gas turbine engines typically include a compressor, a combustor, and a turbine. The compressor compresses air drawn into the engine and delivers high pressure air to the combustor. In the combustor, fuel is mixed with the high pressure air and is ignited. Exhaust products of the combustion reaction in the combustor are directed into the turbine where work is extracted to drive the compressor and, sometimes, an output shaft, fan, or propeller. Portions of the work extracted from the turbine can be used with various subsystems such as motor-generators.
The present disclosure may comprise one or more of the following features and combinations thereof.
According to an aspect of the present disclosure, a gas turbine engine for use in an aircraft may include a low pressure spool including a fan arranged at a forward end of the engine, a low pressure turbine rotor arranged at an aft end of the engine, a low pressure drive shaft extending along an axis and rotationally coupling the fan to receive driven rotation from the low pressure turbine rotor, a high pressure spool including a compressor rotor, a high pressure turbine rotor, and a high pressure drive shaft extending along the axis and rotationally coupling the compressor rotor to receive driven rotation from the high pressure turbine rotor, and an electric device. The electric device may include a stator having an annular core, a rotor rotationally coupled to the low pressure drive shaft and disposed about the stator in electromagnetic communication, and a microchannel cooling system arranged radially inward of the stator in thermal communication with the annular core to pass coolant for removing heat from the stator.
In some embodiments, the microchannel cooling system may include a housing. A network of micropassageways may be arranged within the housing. In some embodiments, the micropassageways may include inlet passageways for receiving coolant and outlet passageways for discharging heated coolant. In some embodiments, each inlet passageway may be connected with at least one of the outlet passageways by at least one transfer section to pass coolant in thermal communication with the annular core. In some embodiments, the inlet and outlet passageways may be arranged in alternating sequence in the circumferential direction.
In some embodiments, the stator may include electrical windings disposed radially outward of the annular core. In some embodiments, the rotor may include a magnet arranged radially outward of the stator and separated therefrom by an air gap. In some embodiments, the coolant may include air received from the fan. In some embodiments, the electric device may be one of an electric motor, an electric generator, and an electric motor-generator.
According to another aspect of the present disclosure, a gas turbine engine for use in an aircraft may include a low pressure spool including a fan arranged at a forward end of the engine, a low pressure turbine rotor arranged at an aft end of the engine, a low pressure drive shaft extending along an axis and rotationally coupling the fan to receive driven rotation from the low pressure turbine rotor, an electric device including a stator having an annular core, a rotor rotationally coupled to the low pressure drive shaft and disposed about the stator in electromagnetic communication, and a microchannel cooling system. The microchannel cooling system may be arranged radially inward of the stator in thermal communication with the annular core to pass coolant for removing heat from the stator.
In some embodiments, the microchannel cooling system may include a housing. A network of micropassageways may be arranged within the housing. The micropassageways may include inlet passageways for receiving coolant and outlet passageways for discharging heated coolant. In some embodiments, each inlet passageway may be connected with at least one of the outlet passageways by at least one transfer section to pass coolant in thermal communication with the annular core. In some embodiments, the inlet and outlet passageways may be arranged in alternating sequence in the circumferential direction.
In some embodiments, the stator may include electrical windings disposed radially outward of the annular core. In some embodiments, the rotor may include a magnet arranged radially outward of the stator and separated therefrom by an air gap. In some embodiments, the coolant may include air received from the fan. In some embodiments, the electric device may be one of an electric motor, an electric generator, and an electric motor-generator.
According to another aspect of the present disclosure, an electrical device of gas turbine engine may include a stator having an annular core, a rotor rotationally coupled to a shaft and disposed about the stator in electromagnetic communication, and a microchannel cooling system. The microchannel cooling system may be arranged in thermal communication with the annular core to pass coolant for removing heat from the stator.
These and other features of the present disclosure will become more apparent from the following description of the illustrative embodiments.
For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to a number of illustrative embodiments illustrated in the drawings and specific language will be used to describe the same.
Gas turbine engines may be adapted for various uses, such as to propel aircraft, watercraft, and/or for power generation. In such adapted vehicle use, electric motor assist may be used to supplement rotational force from the engine. Moreover, general electrical power demands on gas turbine engines adapted for such uses are rapidly increasing due to the growing number and power requirement of processors, actuators, and accessories. Drawing additional electric power from high pressure (HP) driven electric generators can limit the operation of the gas turbine engine, for example, by decreasing certain operating margins at peak demand.
The present disclosure includes descriptions of gas turbine engines that include low pressure (LP) electric devices (such as electric motors, generators, and/or motor-generators) configured to create and/or supply electric power. While electric motors and electric generators each perform respective function, motor-generators include electrical devices that can be selectively operated in a generation mode to generate electricity for use in other systems and in a drive mode to drive mechanical rotation by consumption of electrical power. Such arrangements can promote operational flexibility and power management optimization.
As shown in
In the illustrative embodiment as shown in
As best shown in Box A of
Referring to
As shown in
In the illustrative embodiment as shown in
In the illustrative embodiment as shown in
As shown in
As shown in
Referring to
In another illustrative embodiment as shown in
As shown in
As shown in
A non-exhaustive list of potential coolants for removing heat from the electrical device may include any of oil, fuel, refrigerant, propylene glycol and water (PGW), air (for example, from the fan), but in some embodiments, the coolant may include any suitable fluid, and may be dedicated and/or shared with other systems. In the illustrative embodiment, the stator is arranged radially inward of the rotor. In some embodiments, the rotor may be arranged radially inward of an outer rotor. In embodiments in which the rotor is radially inward of the rotor, the microchannel cooling system may be arranged outward of the stator (opposite the air gap) and/or with any suitable arrangement.
While the disclosure has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
This application claims the benefit of priority to U.S. Provisional Application No. 62/529,173, filed Jul. 6, 2017, the entire disclosure of which is hereby incorporated by reference, including but without limitation, those portions directed to microchannel cooling of gas turbine engine components.
Number | Name | Date | Kind |
---|---|---|---|
2803943 | Sinclair et al. | Aug 1957 | A |
3720060 | Davies et al. | Mar 1973 | A |
3807815 | Kasabian | Apr 1974 | A |
4347451 | Mizuyama | Aug 1982 | A |
4497171 | Corrigan et al. | Feb 1985 | A |
4804288 | Tiernan, Jr. | Feb 1989 | A |
5182960 | Chary | Feb 1993 | A |
5309029 | Gregory et al. | May 1994 | A |
5867979 | Newton et al. | Feb 1999 | A |
6064123 | Gislason et al. | May 2000 | A |
6729140 | Care et al. | May 2004 | B2 |
6851267 | Bruno et al. | Feb 2005 | B2 |
6914344 | Franchet et al. | Jul 2005 | B2 |
7484354 | Stretton | Feb 2009 | B2 |
8198744 | Kern et al. | Jun 2012 | B2 |
8424280 | Moore et al. | Apr 2013 | B2 |
9121351 | Ress, Jr. et al. | Sep 2015 | B2 |
9657646 | Wotzak | May 2017 | B2 |
20050132693 | Macfarlane et al. | Jun 2005 | A1 |
20060101804 | Stretton | May 2006 | A1 |
20060225431 | Kupratis | Oct 2006 | A1 |
20060260323 | Moulebhar | Nov 2006 | A1 |
20070035137 | Matsukuma et al. | Feb 2007 | A1 |
20070137219 | Linet et al. | Jun 2007 | A1 |
20070151258 | Gaines et al. | Jul 2007 | A1 |
20080120980 | Gemin et al. | May 2008 | A1 |
20080148881 | Moniz et al. | Jun 2008 | A1 |
20080265580 | Sharp | Oct 2008 | A1 |
20090007568 | Eccles et al. | Jan 2009 | A1 |
20090175716 | Vetters | Jul 2009 | A1 |
20090288421 | Zeiner et al. | Nov 2009 | A1 |
20090290976 | Suciu et al. | Nov 2009 | A1 |
20120133150 | Dooley et al. | May 2012 | A1 |
20130020888 | Anthony | Jan 2013 | A1 |
20130296092 | Beckner et al. | Nov 2013 | A1 |
20140150401 | Venter | Jun 2014 | A1 |
20140224063 | Alford et al. | Aug 2014 | A1 |
20140265666 | Shoykhet | Sep 2014 | A1 |
20140328668 | Anthony | Nov 2014 | A1 |
20140356135 | French et al. | Dec 2014 | A1 |
20140367970 | Van Der Ham et al. | Dec 2014 | A1 |
20160047319 | Gieras et al. | Feb 2016 | A1 |
20160118862 | Maki-Ontto | Apr 2016 | A1 |
20170297727 | Niergarth et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
102010014968 | Oct 2011 | DE |
798454 | Oct 1997 | EP |
2412939 | Feb 2012 | EP |
1127659 | Sep 1968 | GB |
2444838 | Jun 2008 | GB |
2010110025 | May 2010 | JP |
1995002120 | Jan 1995 | WO |
Entry |
---|
JP-2010110025-A (English Translation) (Year: 2010). |
Number | Date | Country | |
---|---|---|---|
20190010824 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62529173 | Jul 2017 | US |