The present disclosure relates to a gas turbine engine with a third stream.
A gas turbine engine typically includes a fan and a turbomachine. The turbomachine generally includes an inlet, one or more compressors, a combustor, and at least one turbine. The compressors compress air which is channeled to the combustor where it is mixed with fuel. The mixture is then ignited for generating hot combustion gases. The combustion gases are channeled to the turbine(s) which extracts energy from the combustion gases for powering the compressor(s), as well as for producing useful work to propel an aircraft in flight. The turbomachine is mechanically coupled to the fan for driving the fan during operation.
A full and enabling disclosure of the present disclosure, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference will now be made in detail to present embodiments of the disclosure, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the disclosure.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other implementations. Additionally, unless specifically identified otherwise, all embodiments described herein should be considered exemplary.
As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components.
The terms “forward” and “aft” refer to relative positions within a gas turbine engine or vehicle, and refer to the normal operational attitude of the gas turbine engine or vehicle. For example, with regard to a gas turbine engine, forward refers to a position closer to an engine inlet and aft refers to a position closer to an engine nozzle or exhaust.
The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows.
The terms “coupled,” “fixed,” “attached to,” and the like refer to both direct coupling, fixing, or attaching, as well as indirect coupling, fixing, or attaching through one or more intermediate components or features, unless otherwise specified herein.
The singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise.
The phrases “from X to Y” and “between X and Y” each refers to a range of values inclusive of the endpoints (i.e., refers to a range of values that includes both X and Y).
A “third stream” as used herein means a non-primary air stream capable of increasing fluid energy to produce a minority of total propulsion system thrust. A pressure ratio of the third stream may be higher than that of the primary propulsion stream (e.g., a bypass or propeller driven propulsion stream). The thrust may be produced through a dedicated nozzle or through mixing of an airflow through the third stream with a primary propulsion stream or a core air stream, e.g., into a common nozzle.
In certain exemplary embodiments an operating temperature of the airflow through the third stream may be less than a maximum compressor discharge temperature for the engine, and more specifically may be less than 350 degrees Fahrenheit (such as less than 300 degrees Fahrenheit, such as less than 250 degrees Fahrenheit, such as less than 200 degrees Fahrenheit, and at least as great as an ambient temperature). In certain exemplary embodiments these operating temperatures may facilitate heat transfer to or from the airflow through the third stream and a separate fluid stream. Further, in certain exemplary embodiments, the airflow through the third stream may contribute less than 50% of the total engine thrust (and at least, e.g., 2% of the total engine thrust) at a takeoff condition, or more particularly while operating at a rated takeoff power at sea level, static flight speed, 86 degrees Fahrenheit ambient temperature operating conditions.
Furthermore in certain exemplary embodiments, aspects of the airflow through the third stream (e.g., airstream, mixing, or exhaust properties), and thereby the aforementioned exemplary percent contribution to total thrust, may passively adjust during engine operation or be modified purposefully through use of engine control features (such as fuel flow, electric machine power, variable stators, variable inlet guide vanes, valves, variable exhaust geometry, or fluidic features) to adjust or optimize overall system performance across a broad range of potential operating conditions.
The term “disk loading” refers to an average pressure change across a plurality of rotor blades of a rotor assembly, such as the average pressure change across a plurality of fan blades of a fan.
The term “propulsive efficiency” refers to an efficiency with which the energy contained in an engine's fuel is converted into kinetic energy for the vehicle incorporating the engine, to accelerate it, or to replace losses due to aerodynamic drag or gravity.
Generally, a turbofan engine includes a fan to provide a desired amount of thrust without overloading the fan blades (i.e., without increasing a disk loading of the fan blades of the fan beyond a certain threshold), and therefore to maintain a desired overall propulsive efficiency for the turbofan engine. Conventional turbofan engine design practice has been to provide an outer nacelle surrounding the fan to provide relatively efficient thrust for the turbofan engine. Such a configuration may generally limit a permissible size of the fan (i.e., a diameter of the fan). However, the inventors of the present disclosure have found that turbofan engine design is now driving the diameter of the fan higher to provide as much thrust for the turbofan engine as possible from the fan to improve an overall propulsive efficiency of the turbofan engine.
By increasing the fan diameter, an installation of the turbofan engine becomes more difficult. In addition, if an outer nacelle is maintained, the outer nacelle may become weight prohibitive with some larger diameter fans. Further, as the need for turbofan engines to provide more thrust continues, the thermal demands on the turbofan engines correspondingly increase.
The inventors of the present disclosure found that for a three-stream gas turbine engine having a primary fan and a secondary fan, with the secondary fan being a ducted fan providing an airflow to a third stream of the gas turbine engine, an overall propulsive efficiency of the gas turbine engine that results from providing a high diameter fan may be maintained at a high level, while reducing the size of the primary fan. Such a configuration may maintain a desired overall propulsive efficiently for the gas turbine engine, or unexpectedly may in fact increase the overall propulsive efficiency of the gas turbine engine.
Furthermore, the inventors of the present disclosure have found that a compact, lightweight, and efficient secondary fan (also referred to as a mid-fan) arrangement can be provided for a three-stream gas turbine engine by providing a counter rotating arrangement of a first secondary fan and a second secondary fan. This arrangement facilitates favorable flow characteristics with a simple and compact mid-fan construction, eliminating or reducing the need for intermediate structures, and further facilitates simple and compact arrangements of downstream components in the turbomachine and the shafts or spools used to connect therebetween.
Referring now to
For reference, the engine 100 defines an axial direction A, a radial direction R, and a circumferential direction C. Moreover, the engine 100 defines an axial centerline or longitudinal axis 112 that extends along the axial direction A. In general, the axial direction A extends parallel to the longitudinal axis 112, the radial direction R extends outward from and inward to the longitudinal axis 112 in a direction orthogonal to the axial direction A, and the circumferential direction extends three hundred sixty degrees (360°) around the longitudinal axis 112. The engine 100 extends between a forward end 114 and an aft end 116, e.g., along the axial direction A.
The engine 100 includes a turbomachine 120 and a rotor assembly, also referred to a fan section 150, positioned upstream thereof. Generally, the turbomachine 120 includes, in serial flow order, a compressor section, a combustion section, a turbine section, and an exhaust section. Particularly, as shown in
It will be appreciated that as used herein, the terms “high/low speed” and “high/low pressure” are used with respect to the high pressure/high speed system and low pressure/low speed system interchangeably. Further, it will be appreciated that the terms “high” and “low” are used in this same context to distinguish the two systems, and are not meant to imply any absolute speed and/or pressure values.
The high energy combustion products flow from the combustor 130 downstream to a high pressure turbine 132. The high pressure turbine 132 drives the high pressure compressor 128 through a high pressure shaft 136. In this regard, the high pressure turbine 132 is drivingly coupled with the high pressure compressor 128. As will be appreciated, the high pressure compressor 128, the combustor 130, and the high pressure turbine 132 may collectively be referred to as the “core” of the engine 100. The high energy combustion products then flow to a low pressure turbine 134. The low pressure turbine 134 drives the low pressure compressor 126 and components of the fan section 150 through a low pressure shaft 138. In this regard, the low pressure turbine 134 is drivingly coupled with the low pressure compressor 126 and components of the fan section 150. The LP shaft 138 is coaxial with the HP shaft 136 in this example embodiment. After driving each of the turbines 132, 134, the combustion products exit the turbomachine 120 through a turbomachine exhaust nozzle 140.
Accordingly, the turbomachine 120 defines a working gas flowpath or core duct 142 that extends between the core inlet 124 and the turbomachine exhaust nozzle 140. The core duct 142 is an annular duct positioned generally inward of the core cowl 122 along the radial direction R. The core duct 142 (e.g., the working gas flowpath through the turbomachine 120) may be referred to as a second stream.
The fan section 150 includes a fan 152, which is the primary fan in this example embodiment. For the depicted embodiment of
As depicted, the fan 152 includes an array of fan blades 154 (only one shown in
Moreover, the array of fan blades 154 can be arranged in equal spacing around the longitudinal axis 112. Each fan blade 154 has a root and a tip and a span defined therebetween. Further, each fan blade 154 defines a fan blade tip radius R1 along the radial direction R from the longitudinal axis 112 to the tip, and a hub radius (or inner radius) R2 along the radial direction R from the longitudinal axis 112 to the base of each fan blade 154 (i.e., from the longitudinal axis 112 to a radial location where each fan blade 154 meets a front hub of the gas turbine engine 100 at a leading edge of the respective fan blade 154). As will be appreciated, a distance from the base of each fan blade 154 to a tip of the respective fan blade 154 is referred to as a span of the respective fan blade 154. Further, the fan 152, or rather each fan blade 154 of the fan 152, defines a fan radius ratio, RqR, equal to R1 divided by R2. As the fan 152 is the primary fan of the engine 100, the fan radius ratio, RqR, of the fan 152 may be referred to as the primary fan radius ratio, RqRPrim.-Fan.
Moreover, each fan blade 154 defines a central blade axis 156. For this embodiment, each fan blade 154 of the fan 152 is rotatable about their respective central blade axis 156, e.g., in unison with one another. One or more actuators 158 are provided to facilitate such rotation and therefore may be used to change a pitch of the fan blades 154 about their respective central blades' axes 156.
The fan section 150 further includes a fan guide vane array 160 that includes fan guide vanes 162 (only one shown in
Each fan guide vane 162 defines a central blade axis 164. For this embodiment, each fan guide vane 162 of the fan guide vane array 160 is rotatable about its respective central blade axis 164, e.g., in unison with one another. One or more actuators 166 are provided to facilitate such rotation and therefore may be used to change a pitch of the fan guide vane 162 about its respective central blade axis 164. However, in other embodiments, each fan guide vane 162 may be fixed or unable to be pitched about its central blade axis 164. The fan guide vanes 162 are mounted to a fan cowl 170.
As shown in
The ducted fan 184 includes a plurality of fan blades (not separately labeled in
The fan cowl 170 annularly encases at least a portion of the core cowl 122 and is generally positioned outward of at least a portion of the core cowl 122 along the radial direction R. Particularly, a downstream section of the fan cowl 170 extends over a forward portion of the core cowl 122 to define a fan duct flowpath, or simply a fan duct 172. According to this embodiment, the fan flowpath or fan duct 172 may be understood as forming at least a portion of the third stream of the engine 100.
Incoming air may enter through the fan duct 172 through a fan duct inlet 176 and may exit through a fan exhaust nozzle 178 to produce propulsive thrust. The fan duct 172 is an annular duct positioned generally outward of the core duct 142 along the radial direction R. The fan cowl 170 and the core cowl 122 are connected together and supported by a plurality of substantially radially-extending, circumferentially-spaced stationary struts 174 (only one shown in
The engine 100 also defines or includes an inlet duct 180. The inlet duct 180 extends between an engine inlet 182 and the core inlet 124/fan duct inlet 176. The engine inlet 182 is defined generally at the forward end of the fan cowl 170 and is positioned between the fan 152 and the fan guide vane array 160 along the axial direction A. The inlet duct 180 is an annular duct that is positioned inward of the fan cowl 170 along the radial direction R. Air flowing downstream along the inlet duct 180 is split, not necessarily evenly, into the core duct 142 and the fan duct 172 by a fan duct splitter or leading edge 144 of the core cowl 122. The inlet duct 180 is wider than the core duct 142 along the radial direction R. The inlet duct 180 is also wider than the fan duct 172 along the radial direction R. The ducted fan 184 is positioned at least partially in the inlet duct 180.
Notably, for the embodiment depicted, the engine 100 includes one or more features to increase an efficiency of a third stream thrust, Fn3S (e.g., a thrust generated by an airflow through the fan duct 172 exiting through the fan exhaust nozzle 178, generated at least in part by the ducted fan 184). In particular, the engine 100 further includes an array of inlet guide vanes 186 positioned in the inlet duct 180 upstream of the ducted fan 184 and downstream of the engine inlet 182. The array of inlet guide vanes 186 are arranged around the longitudinal axis 112. For this embodiment, the inlet guide vanes 186 are not rotatable about the longitudinal axis 112. Each inlet guide vane 186 defines a central blade axis (not labeled for clarity), and is rotatable about its respective central blade axis, e.g., in unison with one another. In such a manner, the inlet guide vanes 186 may be considered a variable geometry component. One or more actuators 188 are provided to facilitate such rotation and therefore may be used to change a pitch of the inlet guide vanes 186 about their respective central blade axes. However, in other embodiments, each inlet guide vanes 186 may be fixed or unable to be pitched about its central blade axis.
Further, located downstream of the ducted fan 184 and upstream of the fan duct inlet 176, the engine 100 includes an array of outlet guide vanes 190. As with the array of inlet guide vanes 186, the array of outlet guide vanes 190 are not rotatable about the longitudinal axis 112. However, for the embodiment depicted, unlike the array of inlet guide vanes 186, the array of outlet guide vanes 190 are configured as fixed-pitch outlet guide vanes.
Further, it will be appreciated that for the embodiment depicted, the fan exhaust nozzle 178 of the fan duct 172 is further configured as a variable geometry exhaust nozzle. In such a manner, the engine 100 includes one or more actuators 192 for modulating the variable geometry exhaust nozzle. For example, the variable geometry exhaust nozzle may be configured to vary a total cross-sectional area (e.g., an area of the nozzle in a plane perpendicular to the longitudinal axis 112) to modulate an amount of thrust generated based on one or more engine operating conditions (e.g., temperature, pressure, mass flowrate, etc. of an airflow through the fan duct 172). A fixed geometry exhaust nozzle may also be adopted.
The combination of the array of inlet guide vanes 186 located upstream of the ducted fan 184, the array of outlet guide vanes 190 located downstream of the ducted fan 184, and the fan exhaust nozzle 178 may result in a more efficient generation of third stream thrust, Fn3S, during one or more engine operating conditions. Further, by introducing a variability in the geometry of the inlet guide vanes 186 and the fan exhaust nozzle 178, the engine 100 may be capable of generating more efficient third stream thrust, Fn3S, across a relatively wide array of engine operating conditions, including takeoff and climb (where a maximum total engine thrust FnTotal, is generally needed) as well as cruise (where a lesser amount of total engine thrust, FnTotal, is generally needed).
Moreover, referring still to
Although not depicted, the heat exchanger 200 may be an annular heat exchanger extending substantially 360 degrees in the fan duct 172 (e.g., at least 300 degrees, such as at least 330 degrees). In such a manner, the heat exchanger 200 may effectively utilize the air passing through the fan duct 172 to cool one or more systems of the engine 100 (e.g., lubrication oil systems, compressor bleed air, electrical components, etc.). The heat exchanger 200 uses the air passing through duct 172 as a heat sink and correspondingly increases the temperature of the air downstream of the heat exchanger 200 and exiting the fan exhaust nozzle 178.
Referring now to
The exemplary gas turbine engine 100 depicted in
The primary fan inner fan area, AP_In, refers to an area defined by an annulus representing a portion of the fan 152 located inward of the inlet splitter 196 of the fan cowl 170. In particular, the gas turbine engine 100 further defines an engine inlet inner radius, R6. The engine inlet inner radius, R6, is defined along the radial direction R from the longitudinal axis 112 to an inner casing defining the engine inlet 182 directly inward along the radial direction R from the inlet splitter 196. The primary fan inner fan area, AP_In, refers to an area defined by the formula: πR52−πR62.
The secondary fan outer fan area, AS_Out, refers to an area representing a portion of an airflow from the ducted fan 184 that is provided to the fan duct 172. In particular, the leading edge 144 defines a leading edge radius, R7, and the gas turbine engine 100 defines an effective fan duct inlet outer radius, R8 (see
Referring briefly to
Referring back to
The primary fan outer fan area, AP_Out, the primary fan inner fan area, AP_In, the secondary fan outer fan area, AS_Out, and the secondary fan inner fan area, AS_In, may be used in defining various airflow ratios for the engine 100. The exemplary engine 100 of
More specifically, the amount of the airflow through the bypass passage 194 is determined using a fan pressure ratio for the fan 152 while operating at the rated speed during standard day operating conditions, and the primary fan outer fan area, AP_Out. The amount of airflow through the inlet duct 180 is determined using a fan pressure ratio for the fan 152 while operating at a rated speed during standard day operating conditions, and the primary fan inner fan area, AP_In. The amount of airflow through the fan duct 172 and the amount of airflow through the core duct 142 is determined based on the amount of airflow through the inlet duct 180 and the secondary fan outer fan area, AS_Out, and the secondary fan inner fan area, AS_In.
Referring now to
Flow provided to the mid-fan arrangement 301 is at least partly motivated by a primary fan arrangement (not shown, see fan section 150 of
The mid-fan arrangement 301 of
The secondary fan assembly 387 of
As above, the first secondary fan 318 and the second secondary fan 319 in
In the embodiment shown in
As noted above, each of the first secondary fan 318 and the second secondary fan 319 may be driven by the turbomachine 320. As described in greater detail with reference to
The turbomachine 320 depicted includes a first shaft 328 configured to drive the first secondary fan 318 and a second shaft 329 configured to drive the second secondary fan 319. As above, the first secondary fan 318 and the second secondary fan 319 are configured to operate in opposite rotational directions. Accordingly, the first shaft 328 and the second shaft 329 may also be configured to operate in opposite rotational directions. Of course, it should be appreciated that the first shaft 328 and the second shaft 329 may operate in the same rotational direction and still drive the first secondary fan 318 and the second secondary fan 319 in opposite rotational directions, for example through the use of gearing.
In the embodiment of
Still referring to
In the embodiment of
Still referring to
In the embodiment shown in
Referring now to
As depicted in
The embodiment of
Turning now to
As shown, the embodiment of
Turning now to
Still referring to
The variable mixer control may additionally or alternatively have any suitable structure for varying an amount of airflow allowable, e.g., into the fan duct 372. For example, the variable mixer control may include a blocker door 391, depicted in phantom, configured to pivot into the mixer duct 393 to partially close off the mixer duct 393, into the fan duct 372, or both.
As shown in
Turning now to
Referring still to the gas turbine engines of
Referring particularly to
Notably, in other embodiments of the present disclosure, a turboprop engine may be provided with a reverse flow combustor.
Referring to
More specifically, still, the gas turbine engine of
By contrast, the gas turbine engine of
Notably, the exemplary geared, ducted, turbofan engine 544 of
Further, the exemplary gas turbine engine of
Generally, a turbofan engine includes a fan to provide a desired amount of thrust without overloading the fan blades (i.e., without increasing a disk loading of the fan blades of the fan beyond a certain threshold), and therefore to maintain a desired overall propulsive efficiency for the turbofan engine. Conventional turbofan engine design practice has been to provide an outer nacelle surrounding the fan to provide relatively efficient thrust for the turbofan engine. Such a configuration may generally limit a permissible size of the fan (i.e., a diameter of the fan). However, the inventors of the present disclosure have found that turbofan engine design is now driving the diameter of the fan higher to provide as much thrust for the turbofan engine as possible from the fan to improve an overall propulsive efficiency of the turbofan engine.
By increasing the fan diameter, an installation of the turbofan engine becomes more difficult. In addition, if an outer nacelle is maintained, the outer nacelle may become weight prohibitive with some larger diameter fans. Further, as the need for turbofan engines to provide more thrust continues, the thermal demands on the turbofan engines correspondingly increases.
The inventors of the present disclosure found that for a three stream gas turbine engine having a primary fan and a secondary fan, with the secondary fan being a ducted fan providing an airflow to a third stream of the gas turbine engine, an overall propulsive efficiency of the gas turbine engine that results from providing a high diameter fan may be maintained at a high level, while reducing the size of the primary fan. Such a configuration may maintain a desired overall propulsive efficiently for the gas turbine engine, or unexpectedly may in fact increase the overall propulsive efficiency of the gas turbine engine.
The inventors proceeded in the manner of designing a gas turbine engine with given primary fan characteristics, secondary fan characteristics, and turbomachine characteristics; checking the propulsive efficiency of the designed gas turbine engine; redesigning the gas turbine engine with varying primary fan, secondary fan, and turbomachine characteristics; rechecking the propulsive efficiency of the redesigned gas turbine engine; etc. during the design of several different types of gas turbine engines, including the gas turbine engines described above with reference to
As will be appreciated, it may generally be desirable to increase a fan diameter in order to provide a higher thrust to power airflow ratio, which typically correlates to a higher overall propulsive efficiency. However, increasing the fan diameter too much may actually result in a decrease in propulsive efficiency at higher speeds due to a drag from the fan blades. Further, increasing the fan diameter too much may also create prohibitively heavy fan blades, creating installation problems due to the resulting forces on the supporting structure (e.g., frames, pylons, etc.), exacerbated by a need to space the engine having such fan blades further from a mounting location on the aircraft to allow the engine to fit, e.g., under/over the wing, adjacent to the fuselage, etc.
Similarly, it may generally be desirable to increase an airflow through the fan duct relative to the core duct in order to provide a higher core bypass ratio, as such may also generally correlate to a higher overall propulsive efficiency. Notably, however, the higher the core bypass ratio, the less airflow provided to the core of the gas turbine engine. For a given amount of power needed to drive, e.g., a primary fan and a secondary fan of the gas turbine engine, if less airflow is provided, either a maximum temperature of the core needs to be increased or a size of the primary fan or secondary fan needs to be decreased. Such a result can lead to either premature wear of the core or a reduction in propulsive efficiency of the gas turbine engine.
As noted above, the inventors of the present disclosure discovered bounding the relationships defined by the thrust to power airflow ratio and core bypass ratio can result in a gas turbine engine maintaining or even improving upon a desired propulsive efficiency, while also taking into account the gas turbine engine's packaging concerns and weight concerns, and also providing desired thermal management capabilities. The relationship discovered, infra, can identify an improved engine configuration suited for a particular mission requirement, one that takes into account installation, packaging and loading, thermal sink needs and other factors influencing the optimal choice for an engine configuration.
In addition to yielding an improved gas turbine engine, as explained in detail above, utilizing this relationship, the inventors found that the number of suitable or feasible gas turbine engine designs incorporating a primary fan and a secondary fan, and defining a third stream, capable of meeting both the propulsive efficiency requirements and packaging, weight, and thermal sink requirements could be greatly diminished, thereby facilitating a more rapid down selection of designs to consider as a gas turbine engine is being developed. Such a benefit provides more insight to the requirements for a given gas turbine engine well before specific technologies, integration and system requirements are developed fully. Such a benefit also avoids late-stage redesign.
The desired relationships providing for the improved gas turbine engine, discovered by the inventors, are expressed as:
TPAR=(AB+A3S)/AC (1)
CBR=A3S/AC (2)
where TPAR is a thrust to power airflow ratio, CBR is a core bypass ratio, AB is an airflow through a bypass passage of the gas turbine engine while the engine is operated at a rated speed during standard day operating conditions, A3S is an airflow through a third stream of the gas turbine engine while the engine is operated at the rated speed during standard day operating conditions, and AC is an airflow through a core of the gas turbine engine while the engine is operated at the rated speed during standard day operating conditions. The airflow through the core of the gas turbine engine may refer to an airflow through an upstream end of the core (e.g., an airflow through a first stage of a high pressure compressor of the core). AB, A3S, and AC are each expressed as mass flowrate, with the same units as one another.
Values for various parameters representing influencing characteristics of an engine defined by Expressions (1) and (2) are set forth below in TABLE 1:
Referring now to
Referring to
Referring to
As will be appreciated, the unducted gas turbine engines may have, on the whole, a higher TPAR as compared to the ducted gas turbine engines (see
The inventors found that the TPAR values and CBR values in the third and fourth ranges 408, 410 shown may provide a desirable propulsive benefit, while still enabling operation of the core in a reasonable manner, and balancing installation and thermal load considerations.
Referring particularly to
The sixth range 416 corresponds to a TPAR between 3.5 and 20 and a CBR between 0.2 and 5. The sixth range 416 captures the benefits of the present disclosure for ducted gas turbine engines in a direct drive configuration (see, e.g.,
The eighth range 418 corresponds to a TPAR between 8 and 40 and a CBR between 0.2 and 5. The eighth range 418 captures the benefits of the present disclosure for ducted gas turbine engines in a geared configuration (see, e.g.,
The ninth range 419 corresponds to ducted gas turbine engines in a geared configuration having a variable pitch primary fan (see
As will be appreciated, the ducted gas turbine engines may have, on the whole, a lower TPAR than the unducted gas turbine engines as a result of an outer nacelle surrounding a primary fan (the outer nacelle becoming prohibitively heavy with higher diameter primary fans). Further, it will be appreciated that the TPAR values for geared engines may be higher than the TPAR values for direct drive engines, as inclusion of the gearbox allows the primary fan to rotate more slowly than the driving turbine, enabling a comparatively larger primary fan without overloading the primary fan or generating shock losses at a tip of the primary fan. The range of CBR values may generally be relatively high given the relatively low TPAR values (since a relatively high amount of airflow is provided to a secondary fan through an engine inlet when the TPAR values are low), as a necessary amount of airflow to a core of the ducted gas turbine engine may still be provided with a relatively high CBR without exceeding temperature thresholds or requiring a reduction in a size of the primary fan.
The inventors found that the TPAR values and CBR values in the fifth, sixth, seventh, eighth, ninth, and tenth ranges 414, 416, 417, 418, 419, 420 shown may provide a desirable propulsive benefit, while still enabling operation of the core in a reasonable manner, and balancing installation and thermal load considerations.
Referring particularly to
As will be appreciated, the turboprop gas turbine engines may have, on the whole, higher TPAR values than turbofan engines, enabled by the lack of an outer nacelle or other casing surrounding a primary fan and a relatively slow operational speed of the primary fan and aircraft incorporating the turboprop gas turbine engine. The range of CBR values in the eleventh range 422 and the twelfth range 423 may be relatively small, as less air may be provided through a third stream with such a high TPAR without compromising operation of a core of the gas turbine engine.
The inventors found that the TPAR values and CBR values in the eleventh range 422 and twelfth range 423 shown may provide a desirable propulsive benefit, while still enabling operation of the core in a reasonable manner, and balancing installation and thermal load considerations.
TABLE 2, below provides a summary of TPAR values and CBR values for various gas turbine engines in accordance with one or more exemplary aspects of the present disclosure.
0.3 to 1.8
0.3 to 1.5
For the purposes of Table 2, the term “Ducted” refers to inclusion of an outer nacelle around a primary fan (see, e.g.,
It will be appreciated that although the discussion above is generally relating to the open rotor engine 100 described above with reference to
As will be appreciated from the description herein, various embodiments of a gas turbine engine are provided. Certain of these embodiments may be an unducted, single rotor gas turbine engine (see
For example, in some embodiments of the present disclosure, the engine may include a heat exchanger located in an annular duct, such as in a third stream. The heat exchanger may extend substantially continuously in a circumferential direction of the gas turbine engine (e.g., at least 300 degrees, such as at least 330 degrees).
In one or more of these embodiments, a threshold power or disk loading for a fan (e.g., an unducted single rotor or primary forward fan) may range from 25 horsepower per square foot (hp/ft2) or greater at cruise altitude during a cruise operating mode. In particular embodiments of the engine, structures and methods provided herein generate power loading between 80 hp/ft2 and 160 hp/ft2 or higher at cruise altitude during a cruise operating mode, depending on whether the engine is an open rotor or ducted engine.
In various embodiments, an engine of the present disclosure is applied to a vehicle with a cruise altitude up to approximately 65,000 ft. In certain embodiments, cruise altitude is between approximately 28,000 ft and approximately 45,000 ft. In still certain embodiments, cruise altitude is expressed in flight levels based on a standard air pressure at sea level, in which a cruise flight condition is between FL280 and FL650. In another embodiment, cruise flight condition is between FL280 and FL450. In still certain embodiments, cruise altitude is defined based at least on a barometric pressure, in which cruise altitude is between approximately 4.85 psia and approximately 0.82 psia based on a sea level pressure of approximately 14.70 psia and sea level temperature at approximately 59 degrees Fahrenheit. In another embodiment, cruise altitude is between approximately 4.85 psia and approximately 2.14 psia. It should be appreciated that in certain embodiments, the ranges of cruise altitude defined by pressure may be adjusted based on a different reference sea level pressure and/or sea level temperature.
As such, it will be appreciated that an engine of such a configuration may be configured to generate at least 25,000 pounds and less than 80,000 of thrust during operation at a rated speed, such as between 25,000 and 50,000 pounds of thrust during operation at a rated speed, such as between 25,000 and 40,000 pounds of thrust during operation at a rated speed. Alternatively, in other exemplary aspects, an engine of the present disclosure may be configured to generate much less power, such as at least 2,000 pounds of thrust during operation at a rated speed.
In various exemplary embodiments, the fan (or rotor) may include twelve (12) fan blades. From a loading standpoint, such a blade count may allow a span of each blade to be reduced such that the overall diameter of the primary fan may also be reduced (e.g., to twelve feet in one exemplary embodiment). That said, in other embodiments, the fan may have any suitable blade count and any suitable diameter. In certain suitable embodiments, the fan includes at least eight (8) blades. In another suitable embodiment, the fan may have at least twelve (12) blades. In yet another suitable embodiment, the fan may have at least fifteen (15) blades. In yet another suitable embodiment, the fan may have at least eighteen (18) blades. In one or more of these embodiments, the fan includes twenty-six (26) or fewer blades, such as twenty (20) or fewer blades. Alternatively, in certain suitable embodiments, the fan may only include at least four (4) blades, such as with a fan of a turboprop engine.
Further, in certain exemplary embodiments, the rotor assembly may define a rotor diameter (or fan diameter) of at least 10 feet, such as at least 11 feet, such as at least 12 feet, such as at least 13 feet, such as at least 15 feet, such as at least 17 feet, such as up to 28 feet, such as up to 26 feet, such as up to 24 feet, such as up to 18 feet.
In various embodiments, it will be appreciated that the engine includes a ratio of a quantity of vanes to a quantity of blades that could be less than, equal to, or greater than 1:1. For example, in particular embodiments, the engine includes twelve (12) fan blades and ten (10) vanes. In other embodiments, the vane assembly includes a greater quantity of vanes to fan blades. For example, in particular embodiments, the engine includes ten (10) fan blades and twenty-three (23) vanes. For example, in certain embodiments, the engine may include a ratio of a quantity of vanes to a quantity of blades between 1:2 and 5:2. The ratio may be tuned based on a variety of factors including a size of the vanes to ensure a desired amount of swirl is removed for an airflow from the primary fan.
Additionally, in certain exemplary embodiments, where the engine includes the third stream and a mid-fan (a ducted fan aft of the primary, forward fan), a ratio R1/R2 may be between 1 and 10, or 2 and 7, or at least 3.3, at least 3.5, at least 4 and less than or equal to 7, where R1 is the radius of the primary fan and R2 is the radius of the mid-fan.
It should be appreciated that various embodiments of the engine, such as the single unducted rotor engine depicted and described herein, may allow for normal subsonic aircraft cruise altitude operation at or above Mach 0.5. In certain embodiments, the engine allows for normal aircraft operation between Mach 0.55 and Mach 0.85 at cruise altitude. In still particular embodiments, the engine allows for normal aircraft operation between Mach 0.75 and Mach 0.85. In certain embodiments, the engine allows for rotor blade tip speeds at or less than 750 feet per second (fps). In other embodiments, the rotor blade tip speed at a cruise flight condition can be 650 to 900 fps, or 700 to 800 fps. Alternatively, in certain suitable embodiments, the engine allows for normal aircraft operation of at least Mach 0.3, such as with turboprop engines.
A fan pressure ratio (FPR) for the primary fan of the fan assembly can be 1.04 to 2.20, or in some embodiments 1.05 to 1.2, or in some embodiments less than 1.08, as measured across the fan blades of the primary fan at a cruise flight condition.
In order for the gas turbine engine to operate with a fan having the above characteristics to define the above FPR, a gear assembly may be provided to reduce a rotational speed of the fan assembly relative to a driving shaft (such as a low pressure shaft coupled to a low pressure turbine). In some embodiments, a gear ratio of the input rotational speed to the output rotational speed is between 3.0 and 4.0, between 3.2 and 3.5, or between 3.5 and 4.5. In some embodiments, a gear ratio of the input rotational speed to the output rotational speed is greater than 4.1. For example, in particular embodiments, the gear ratio is within a range of 4.1 to 14.0, within a range of 4.5 to 14.0, or within a range of 6.0 to 14.0. In certain embodiments, the gear ratio is within a range of 4.5 to 12 or within a range of 6.0 to 11.0.
With respect to a turbomachine of the gas turbine engine, the compressors and/or turbines can include various stage counts. As disclosed herein, the stage count includes the number of rotors or blade stages in a particular component (e.g., a compressor or turbine). For example, in some embodiments, a low pressure compressor may include 1 to 8 stages, a high-pressure compressor may include 4 to 15 stages, a high-pressure turbine may include 1 to 2 stages, and/or a low pressure turbine (LPT) may include 1 to 7 stages. In particular, the LPT may have 4 stages, or between 4 and 7 stages. For example, in certain embodiments, an engine may include a one stage low pressure compressor, an 11 stage high pressure compressor, a two stage high pressure turbine, and 4 stages, or between 4 and 7 stages for the LPT. As another example, an engine can include a three stage low-pressure compressor, a 10 stage high pressure compressor, a two stage high pressure turbine, and a 7 stage low pressure turbine.
A core engine is generally encased in an outer casing defining one half of a core diameter (Dcore), which may be thought of as the maximum extent from a centerline axis (datum for R). In certain embodiments, the engine includes a length (L) from a longitudinally (or axial) forward end to a longitudinally aft end. In various embodiments, the engine defines a ratio of L/Dcore that provides for reduced installed drag. In one embodiment, L/Dcore is at least 2. In another embodiment, L/Dcore is at least 2.5. In some embodiments, the L/Dcore is less than 5, less than 4, and less than 3. In various embodiments, it should be appreciated that the L/Dcore is for a single unducted rotor engine.
The reduced installed drag may further provide for improved efficiency, such as improved specific fuel consumption. Additionally, or alternatively, the reduced installed drag may provide for cruise altitude engine and aircraft operation at the above describe Mach numbers at cruise altitude. Still particular embodiments may provide such benefits with reduced interaction noise between the blade assembly and the vane assembly and/or decreased overall noise generated by the engine by virtue of structures located in an annular duct of the engine.
Additionally, it should be appreciated that ranges of power loading and/or rotor blade tip speed may correspond to certain structures, core sizes, thrust outputs, etc., or other structures of the core engine. However, as previously stated, to the extent one or more structures provided herein may be known in the art, it should be appreciated that the present disclosure may include combinations of structures not previously known to combine, at least for reasons based in part on conflicting benefits versus losses, desired modes of operation, or other forms of teaching away in the art.
Although depicted above as an unshrouded or open rotor engine in the embodiments depicted above, it should be appreciated that aspects of the disclosure provided herein may be applied to shrouded or ducted engines, partially ducted engines, aft-fan engines, or other gas turbine engine configurations, including those for marine, industrial, or aero-propulsion systems. Certain aspects of the disclosure may be applicable to turbofan, turboprop, or turboshaft engines. However, it should be appreciated that certain aspects of the disclosure may address issues that may be particular to unshrouded or open rotor engines, such as, but not limited to, issues related to gear ratios, fan diameter, fan speed, length (L) of the engine, maximum diameter of the core engine (Dcore) of the engine, L/Dcore of the engine, desired cruise altitude, and/or desired operating cruise speed, or combinations thereof.
This written description uses examples to disclose the present disclosure, including the best mode, and also to enable any person skilled in the art to practice the disclosure, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Further aspects are provided by the subject matter of the following clauses:
According to a first clause, a gas turbine engine comprising: a turbomachine comprising a compressor section, a combustion section, and a turbine section arranged in serial flow order, the turbomachine defining an engine inlet to an inlet duct, a fan duct inlet to a fan duct, and a core inlet to a core duct; a primary fan drivingly coupled to the turbomachine; and a secondary fan assembly disposed downstream of the primary fan within the inlet duct, wherein the secondary fan assembly comprises: a first secondary fan drivingly coupled to the turbomachine in a first rotational direction; and a second secondary fan drivingly coupled to the turbomachine in a second rotational direction opposite the first rotational direction.
The gas turbine engine of the preceding clause, wherein the inlet duct comprises a splitter separating the fan duct inlet from the core inlet, wherein the splitter is disposed downstream of the secondary fan assembly.
The gas turbine engine of any of the preceding clauses, further comprising a core cowl enclosing at least a portion of the turbomachine, the core cowl comprising a leading edge that at least in part defines the splitter.
The gas turbine engine of any of the preceding clauses, further comprising: a first shaft drivingly coupled to the turbomachine and driving the first secondary fan in the first rotational direction; and a second shaft drivingly coupled to the turbomachine and driving the second secondary fan in the second rotational direction.
The gas turbine engine of any of the preceding clauses, wherein the first shaft is concentric with the second shaft.
The gas turbine engine of any of the preceding clauses, wherein the first shaft is further configured to drive the primary fan.
The gas turbine engine of any of the preceding clauses, wherein the second shaft is disposed circumferentially about the first shaft.
The gas turbine engine of any of the preceding clauses, further comprising: a third shaft drivingly coupled to a high pressure turbine and a high pressure compressor.
The gas turbine of any of the preceding clauses, wherein the first shaft and the second shaft are each drivingly coupled to a vaneless counter rotating turbine comprising a first plurality of interdigitated stages driving the first shaft and a second plurality of interdigitated stages driving the second shaft.
The gas turbine engine of any of the preceding clauses, wherein the primary fan is an unducted fan.
The gas turbine engine of any of the preceding clauses, wherein the first secondary fan has a greater tip radius than the second secondary fan.
The gas turbine engine of any of the preceding clauses, further comprising a mixer duct inlet to a mixer duct, wherein the first secondary fan is disposed upstream of the mixer duct inlet and the second secondary fan is disposed downstream of the mixer duct inlet.
The gas turbine engine of any of the preceding clauses, further comprising at least one variable mixer control configured to regulate a flow from the first secondary fan and the second secondary fan.
The gas turbine engine of any of the preceding clauses, wherein the at least one variable mixer control comprises: a first variable mixer control configured to regulate the flow from the first secondary fan and the second secondary fan; and a second variable mixer control configured to regulate a flow from only one of the first secondary fan and the second secondary fan.
The gas turbine engine of any of the preceding clauses, wherein at least one of the first secondary fan or the second secondary fan defines a radius ratio of between 0.2 to 0.9.
The gas turbine engine of any of the preceding clauses, wherein the first secondary fan and the second secondary fan are adjacently arranged such that no aerodynamic turning surface is disposed therebetween.
The gas turbine engine of any of the preceding clauses, wherein in at least one radial position of the first secondary fan and the second secondary fan, no structure is disposed therebetween.
The gas turbine engine of any of the preceding clauses, wherein the turbine section of the turbomachine comprises a first turbine stage and a second turbine stage arranged adjacently such that no aerodynamic turning surface is disposed therebetween.
The gas turbine engine of any of the preceding clauses, wherein the first turbine stage drives the first secondary fan in the first rotational direction and the second turbine stage drives the second secondary fan in the second rotational direction.
The gas turbine engine of any of the preceding clauses, wherein the primary fan and at least one of the first secondary fan or the second secondary fan define a tip radius ratio of between 2 to 10.
A gas turbine engine comprising: a turbomachine comprising a compressor section, a combustion section, and a turbine section arranged in serial flow order, the turbomachine defining an engine inlet to an inlet duct, a fan duct inlet to a fan duct, and a core inlet to a core duct; a primary fan driven by the turbomachine; and a secondary fan located downstream of the primary fan within the inlet duct, the gas turbine engine defining a thrust to power airflow ratio between 3.5 and 100 and a core bypass ratio between 0.1 and 10, wherein the thrust to power airflow ratio is a ratio of an airflow through a bypass passage over the turbomachine plus an airflow through the fan duct to an airflow through the core duct, and wherein the core bypass ratio is a ratio of the airflow through the fan duct to the airflow through the core duct.
The gas turbine engine of any preceding clause, wherein the thrust to power airflow ratio and the core bypass ratio are defined when the gas turbine engine is operated at a rated speed during standard day operating conditions.
The gas turbine engine of any preceding clause, wherein the thrust to power airflow ratio between 4 and 75.
The gas turbine engine of any preceding clause, wherein the primary fan is an unducted primary fan, and wherein the thrust to power airflow ratio between 30 and 60.
The gas turbine engine of any preceding clause, wherein the thrust to power airflow ratio between 35 and 50.
The gas turbine engine of any preceding clause, wherein the core bypass ratio between 0.3 and 5.
The gas turbine engine of any preceding clause, wherein the gas turbine engine is a turboprop engine, and wherein the thrust to power airflow ratio between 40 and 100.
The gas turbine engine of any preceding clause, wherein the primary fan is a ducted primary fan, and wherein the thrust to power airflow ratio is between 3.5 and 40.
The gas turbine engine of any preceding clause, wherein the gas turbine engine is a direct drive gas turbine engine, and wherein the thrust to power airflow ratio is between 3.5 and 20.
The gas turbine engine of any preceding clause, wherein the gas turbine engine is a geared gas turbine engine, and wherein the thrust to power airflow ratio is between 8 and 40.
The gas turbine engine of any preceding clause, wherein the secondary fan is a single stage secondary fan.
The gas turbine engine of any preceding clause, wherein the secondary fan is a multi-stage secondary fan.
The gas turbine engine of any preceding clause, wherein the multi-stage secondary fan is a two stage secondary fan.
The gas turbine engine of any preceding clause, wherein the primary fan is a ducted primary fan comprising an outer nacelle surrounding the primary fan and defining the bypass passage downstream of the primary fan and over the turbomachine, wherein the gas turbine engine further defines a bypass passage outlet at a downstream end of the outer nacelle, wherein the fan duct defines a fan duct outlet, and wherein the fan duct outlet is downstream of the bypass passage outlet.
The gas turbine engine of any preceding clause, wherein the primary fan is a ducted primary fan comprising an outer nacelle surrounding the primary fan and defining the bypass passage downstream of the primary fan and over the turbomachine, wherein the gas turbine engine further defines a bypass passage outlet at a downstream end of the outer nacelle, wherein the fan duct defines a fan duct outlet, and wherein the fan duct outlet is upstream of the bypass passage outlet.
A method of operating a gas turbine engine, comprising: operating the gas turbine engine at a rated speed, wherein operating the gas turbine engine at the rated speed comprises operating the gas turbine engine to define a thrust to power airflow ratio between 3.5 and 100 and a core bypass ratio between 0.1 and 5, wherein the thrust to power airflow ratio is a ratio of an airflow through a bypass passage over a turbomachine of the gas turbine engine plus an airflow through a fan duct to an airflow through a core duct, and wherein the core bypass ratio is a ratio of the airflow through the fan duct to the airflow through the core duct.
The method of any preceding clause, wherein The gas turbine engine of claim 1, wherein the thrust to power airflow ratio between 4 and 75.
The method of any preceding clause, wherein the primary fan is an unducted primary fan, and wherein the thrust to power airflow ratio between 30 and 60.
The method of any preceding clause, wherein the thrust to power airflow ratio between 35 and 50.
The method of any preceding clause, wherein the core bypass ratio between 0.3 and 5.