1. Technical Field
The disclosure generally relates to gas turbine engines.
2. Description of the Related Art
A typical gas turbine engine incorporates a compressor section and a turbine section, each of which includes rotatable blades and stationary vanes. Within a surrounding engine casing, the radial outermost tips of the blades are positioned in close proximity to outer air seals. Outer air seals are parts of shroud assemblies mounted within the engine casing. Each outer air seal typically incorporates multiple segments that are annularly arranged within the engine casing, with the inner diameter surfaces of the segments being located closest to the blade tips.
Gas turbine engines and related systems involving blade outer air seals are provided. In this regard, an exemplary embodiment of a blade outer air seal assembly for a gas turbine engine comprises: an annular arrangement of outer air seal segments, each of the segments having ends, the segments being positioned in an end-to-end orientation such that each adjacent pair of the segments forms an intersegment gap therebetween, each intersegment gap being defined, at least partially, by a first recess and a first protrusion, the first protrusion being sized and shaped to be received by the first recess, one of the first recess and the first protrusion being located on an end of a first segment of an adjacent pair of the segments, another of the first recess and the first protrusion being located on an end of a second segment of the adjacent pair of the segments.
An exemplary embodiment of a gas turbine engine comprises: a compressor; a combustion section; a turbine operative to drive the compressor responsive to energy imparted thereto by the combustion section, the turbine having a rotatable set of blades; and a blade outer air seal assembly positioned radially outboard of the blades, the outer air seal assembly having an annular arrangement of outer air seal segments with intersegment gaps being located between the segments, each of the intersegment gaps being defined, at least partially, by a first recess and a first protrusion, the first protrusion being sized and shaped to be received by the first recess, one of the first recess and the first protrusion being located on an end of a first segment of an adjacent pair of the segments, another of the first recess and the first protrusion being located on an end of a second segment of the adjacent pair of the segments.
An exemplary embodiment of a blade outer air seal segment comprises: a blade arrival end; a blade departure end; a first recess; and a first protrusion, the first protrusion being sized and shaped to be received by the first recess; one of the first recess and the first protrusion being located on and extending across a width of the blade arrival end, another of the first recess and the first protrusion being located on and extending across a width of the blade departure end.
Other systems, methods, features and/or advantages of this disclosure will be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be within the scope of the present disclosure.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Gas turbine engines and related systems involving blade outer air seals are provided, several exemplary embodiments of which will be described in detail. In some embodiments, the ends of the outer air seal segments used to form the seals incorporate interlocking features. By way of example, one or more tongues extending from the end of a segment can be received within one or more corresponding grooves of an adjacent segment. This forms a circuitous gas path along an intersegment gap that extends from the inner diameter to the outer diameter of the segments. Configuring the ends in such a manner may tend to reduce distress (e.g., oxidation) of the segments by reducing hot gas ingestion into the intersegment gaps located between the segments.
Referring now in more detail to the drawings,
A portion of engine 100 is depicted in greater detail in the schematic diagram of
As shown in
Attachment of the outer air seal to the mounting ring in the embodiment of
With respect to the annular configuration of the outer air seal, outer air seal 125 is formed of multiple arcuate segments, portions of two of which are depicted schematically in
Portions defining the intersegment gap include a blade departure end 152 of segment 140 and a blade arrival end 154 of segment 142. Generally, the ends interlock with each other (at least when the components are heated to operating temperatures) with the intersegment gap varying in shape between embodiments.
In this regard, the segments incorporate interlocking features that include a protrusion of one segment and a corresponding recess of an adjacent segment. Notably, the protrusion and recess are provided in a tongue-and-groove configuration in the embodiment of
The aforementioned configuration may tend to reduce gas ingestion and corresponding distress exhibited by the ends of the segments. Notably, the advancing suction side of each rotating blade (e.g., side 180 of blade 112) tends to promote a radial inboard-directed flow of cooling air (depicted by the solid arrow) from the intersegment gap. In contrast, the retreating pressure side of each rotating blade (e.g., side 182 of blade 112) tends to promote a radial outboard-directed ingestion flow of hot gas (depicted by the dashed arrow) into the intersegment gap. By providing a circuitous gas path along the intersegment gap, ingestion of hot gas may be reduced, particularly into the outboard portions of the gap.
In the embodiment of
Another embodiment of a blade outer air seal is depicted in
Portions defining the intersegment gap include a blade departure end 202 of segment 190 and a blade arrival end 204 of segment 192. Due to the ship-lap configuration of this embodiment, each of the ends is formed by more than one end portion, with each such portion extending to a different axial position than an adjacent portion. Specifically, end 202 includes portions 203 and 205, whereas end 204 includes portions 207 and 209.
Generally, ends 202, 204 overlap with each other even during a cold condition. In contrast, interlocking features of ends 202, 204 interlock with each other only when the components are heated to operating temperatures. In this regard, the segments 190, 192 incorporate interlocking features, which are provided in a tongue-and-groove configuration. Specifically, end portion 203 includes axial tongues 212, 214 and end portion 207 includes axial grooves 216, 218. The grooves extend axially along the widths of the respective end portions and are oriented to receive the tongues, which also extend axially along the widths of the respective end portions. When the tongues are received within the grooves, a circuitous gas path 220 is formed that extends from the inner diameter 221 of the segments toward the outer diameter 222. Such a circuitous gas path along the intersegment gap may tend to reduce ingestion of hot gas, particularly into the outboard portions of the gap. Notably, the outboard portions of the gap in the embodiment of
It should be emphasized that the above-described embodiments are merely possible examples of implementations set forth for a clear understanding of the principles of this disclosure. Many variations and modifications may be made to the above-described embodiments without departing substantially from the spirit and principles of the disclosure. By way of example, although the embodiments described above include either multiple protrusions or multiple recesses on a given segment end, in other embodiments, combinations of one or more protrusions and one or more recesses can be included on a single segment end. Additionally or alternatively, recesses and protrusions can be discontinuous, such as by forming a checkerboard pattern of protrusions and recesses, for example, with the protrusions and recesses extending axially and radially along a segment end. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the accompanying claims.
The U.S. Government may have an interest in the subject matter of this disclosure as provided for by the terms of contract number F33615-03-D-2345 DO-0009, awarded by the United States Air Force.