The invention relates generally to fuel nozzles for gas turbine engines and, more particularly, to improved methods of making the same.
Conventional fuel nozzles are manufactured in multiple pieces produced from castings that have an overall diameter at least equal to the largest diameter of the parts. Consequently, a large quantity of material is removed, especially if the section with the largest diameter is only a small fraction of the parts. The time and cost for manufacturing parts are thereby increased. Moreover, nozzle parts need to be re-positioned in the machine tool for various operations, which increases the difficulties of manufacturing the fuel nozzles since each repositioning requires that the part be precisely realigned with reference to the machine tool in order to keep tolerances within the desired level.
There is a need to provide improved manufacturing methods which can greatly simplify the manufacturing of gas turbine fuel nozzles, thereby reducing the manufacturing time and cost.
In one aspect, the present invention provides a method of making at least a portion of a gas turbine fuel nozzle, the method comprising: providing a pre-shaped workpiece having two gripping tabs projecting therefrom adjacent opposite ends, the gripping tabs being coaxial with one another; securing the gripping tabs to machine tool holders; rotating the workpiece; machining the workpiece into a near-final form; and removing the gripping tabs from the workpiece.
In a second aspect, the present invention provides a method of making a gas turbine fuel nozzle, the method comprising: providing a pre-shaped workpiece having two opposite gripping tabs thereon, the gripping tabs being aligned on a main axis of the workpiece; inserting the gripping tabs into holders of a machine tool; rotating the workpiece; machining the workpiece with the machine tool into a fuel nozzle in a near-final form; and removing the gripping tabs from the fuel nozzle using the machine tool.
In a third aspect, the present invention provides a pre-shaped workpiece for use in a machine tool to manufacture at least a portion of a gas turbine fuel nozzle, the workpiece comprising two gripping tabs to provide a grip for the machine tool, the gripping tabs being configured and disposed to be removed from the item in a near-final form and being in registry with a main axis of the item.
Further details of these and other aspects of the present invention will be apparent from the detailed description and figures included below.
Reference is now made to the accompanying figures depicting aspects of the present invention, in which:
a and 2b are perspective views of an example of a fuel nozzle made in accordance with the present invention,
a and 4b are views similar to
a shows a workpiece 20 for manufacturing one possible embodiment of gas turbine fuel nozzle. It comprises a stem portion 20a and a flange portion 20b. This workpiece 20 is pre-shaped so as to minimize the quantity of material to be removed. It is preferably obtained by casting, forging, stamping or a combination thereof.
Initially, the workpiece 20 includes two opposite gripping tabs 22, 24. The tabs 22, 24 are integrally connected to the workpiece 20. These gripping tabs 22, 24 are preferably cylindrical, although other shapes and configurations are possible. The two gripping tabs 22, 24 are in registry with the main axis M of the workpiece 20, which means that the center of the gripping tabs 22, 24 are coaxially aligned with the main axis M. However, it should be noted that the main axis M is not necessarily the central axis of the workpiece 20 although this is preferred.
The gripping tabs 22, 24 are used as connection points for machine tool holders. This allows holding the workpiece 20 by simply securing the gripping tabs 22, 24 to the machine tool holders. Since the holders are coaxial, the piece may be rotated during machining, such as turning between centres, etc.
b illustrates the resulting fuel nozzle 20′ at the end of the manufacturing process. One can see that the gripping tabs have been removed.
Once the workpiece 20 is in a near final form, such as near the end of the machining process, the gripping tabs 22, 24 can be removed from the workpiece 20 by cutting them or otherwise removing them, preferably while they are still within at least one of the machine tool holders 32, 34. The advantage of using this process is that the manipulation of the workpiece 20 is minimized. Ideally, the complete manufacturing process could be done without having to remove the workpiece 20 from any of the machine tool holders 32, 34 until the end. This greatly simplifies handling.
a and 4b are views similar to
As can be appreciated, using a workpiece 20 in the making of a gas turbine fuel nozzle 20′ allows having a single piece with fewer braze joints. The integrated one-piece member thus has fewer parts. This allows designing a part with only a minimum of material being removed during the manufacturing process and using the same machine tool 30. Overall, the cost for making a fuel nozzle using the present invention is lower than using conventional techniques and the manufacturing time is lower. Fuel channels may be provided in accordance with U.S. Pat. No. 6,141,968, or any other suitable matter.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without department from the scope of the invention disclosed. For example, the pre-shaped workpiece can be made using other techniques than casting, forging or stamping. The gripping tabs are not necessarily cylindrical. These tabs can be removed from the workpiece, at any stage and using any method. Any number of gripping tabs may be used. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3889356 | Cleaver et al. | Jun 1975 | A |
4151765 | Sevastakis | May 1979 | A |
4494297 | Larsson | Jan 1985 | A |
4559852 | Atkinson | Dec 1985 | A |
4637620 | Graham et al. | Jan 1987 | A |
4899712 | De Bruyn et al. | Feb 1990 | A |
5556649 | Sumioka et al. | Sep 1996 | A |
5604969 | Coop | Feb 1997 | A |
5819593 | Rixon et al. | Oct 1998 | A |
6088903 | Matsuo | Jul 2000 | A |
6141968 | Gates et al. | Nov 2000 | A |
6272748 | Smyth | Aug 2001 | B1 |
6598296 | Smyth | Jul 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20060130328 A1 | Jun 2006 | US |