The present invention relates to the field of thermal machines, and relates in particular to a thermal machine.
Gas turbines, for example inter alia under the type designation GT13E2, are operated with an annular combustion chamber. The combustion itself takes place preferably, but not exclusively, via premixing burners (referred to in the following text for short as burners), such as those disclosed in EP-A1-321 809 or EP-A1-704 657, with these documents and the further development of these premixing burners derived therefrom being an integrating component of this application. By way of example, an annular combustion chamber such as this is disclosed in DE-A1-196 44 378, a detail of which is reproduced in
In the described embodiment, the inner and outer shell 21′, 21 are cooled by convection. In this case, cooling air which enters the plenum chamber 14, arriving as a compressor air flow 23 from the compressor, flows predominantly in the opposite flow direction to the hot gas in the hot-gas channel 22. This cooling air then flows from the plenum chamber 14 on through a respective outer and inner cooling channel 20 and 20′, which cooling channels are formed by cooling shirts 19, 19′ which surround the shells 21, 21′ at a distance. The cooling air flows along the shells 21, 21′ in the cooling channels 20, 20′ in the direction of the combustion chamber shroud 18, which surrounds the combustion chamber 15. There, the air is then available as combustion air to the burners 16.
The hot gas flows from the burners 16 to the turbine (stator blades 13) and in the process flows along the surfaces on the hot-gas side of the inner and outer shells 21′ 21. The flow along these surfaces is, however, not homogeneous in this case, but is influenced by the arrangement of the burners 16.
The inner and outer shells 21′, 21 are subject to both thermal and mechanical loads. In conjunction with the method of operation as well, these loads govern the life of the inner and outer shells 21′, 21 and the inspection intervals which result from this. The non-uniformities in the flow as mentioned above occur both on the hot-gas side and on the cooling-air side. The non-uniformities on the hot-gas side result primarily from the burner arrangement. The non-uniformities on the cooling-air side are caused predominantly by fittings in the cooling channels 20, 20′.
An aspect of the invention is to provide a thermal machine, in particular a gas turbine, such that the load on the thermally particularly highly loaded installation parts is made uniform, thus lengthening the life of the installation overall.
In an embodiment, this uniformity is achieved by action on the cooling in that, in order to compensate for local non-uniformities in the thermal load on the shell and/or in the flow of the cooling medium in the cooling channel, the cooling shirt has corresponding local divergences in the guidance of the cooling medium flow. By this means, cooling can be increased locally in a simple manner in order to reduce corresponding local thermal fatigue loads.
One refinement of the invention is distinguished in that fittings which project into the cooling channel are provided on the outside of the shell, and in that the local constriction, which is caused by the fittings, of the cooling channel is compensated for by corresponding local contouring of the cooling shirt.
In particular, the local contouring of the cooling shirt may comprise a dome, which is curved outwards and extends over the area of the fittings, in the cooling shirt.
In another refinement of the invention, in order to compensate for an increased thermal load which occurs at a specific point on the shell, or in order to compensate for a local constriction, which is caused by fittings, in the cooling channel, means for introduction of additional cooling air into the cooling channel are provided at this point, wherein, when a cooling medium which is at a raised pressure is applied to the outside of the cooling shirt, the means for introduction of additional cooling air into the cooling channel preferably comprise cooling openings in the cooling shirt.
In particular, the relevant thermal machine may be a gas turbine with a combustion chamber, and the hot-gas channel may lead from the combustion chamber to a first row of stator blades. Furthermore, the combustion chamber may be formed in an annular shape and can be separated on a separating plane, with the hot-gas channel being bounded by an outer shell and an inner shell, and with an inner and an outer cooling channel being formed by a corresponding inner and outer cooling shirt.
The gas turbine preferably comprises a compressor for compression of inductive combustion air, the output of the compressor is connected to a plenum chamber, and the combustion chamber is arranged with the hot-gas channel, which is connected to it, and the adjacent cooling channels in the plenum chamber, and is surrounded by the plenum chamber, such that compressed air flows from the plenum chamber in the opposite direction to the hot-gas flow in the hot-gas channel, through the cooling channels to burners which are arranged on the combustion chamber. Furthermore, the burners may advantageously be in the form of premixing burners, in particular double-cone burners.
The invention will be explained in more detail in the following text with reference to exemplary embodiments and in conjunction with the drawings. All the elements which are not required for immediate understanding of the invention have been omitted. Identical parts are provided with same reference symbols in the various figures. The flow direction of the media is indicated by arrows. In the figures:
For the purposes of the invention, the distribution of the cooling air is influenced by a (local) adaptation of the cooling channel cross-sectional profile in conjunction with fittings which are present in the cooling channel such that a local adaptation of the cooling air mass flow and a local adaptation of the heat transfer between the shell and the cooling air are created. The cooling channel cross section is in this case defined by the existing contour of the inner and outer shells and modified contouring, that is to say contouring whose shape has been adapted, of the cooling air plates (cooling shirts) which are mounted on the inner and outer shells.
A step such as this (from
It is particularly worthwhile to use a local dome 26 such as this in order to locally improve the cooling when—as shown in FIGS. 3A and 3B—there are special fittings 28, which impede the cooling flow, in the cooling channel 20. The width and length of the dome 26 are then expediently matched to the obstructing fittings 28.
In addition to or as an alternative to the dome-like local widening (26) of the cooling channel 20, it is also possible, as shown in
Furthermore, it is feasible within the scope of the invention to change the geometry of the ribs 27 and/or of the fittings 28 themselves, in particular also in combination with modifications of the cooling shirt and with cooling openings for additional cooling air to enter.
Number | Date | Country | Kind |
---|---|---|---|
0244/08 | Feb 2008 | CH | national |
This application is a continuation of International Application No. PCT/EP2009/051763, filed Feb. 16, 2009, which claims priority to Swiss Patent Application No. CH 00244/08, filed Feb. 20, 2008. The entire disclosure of both applications is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3652181 | Wilhelm | Mar 1972 | A |
4872312 | Iizuka et al. | Oct 1989 | A |
4932861 | Keller et al. | Jun 1990 | A |
5024058 | Shekleton et al. | Jun 1991 | A |
5025622 | Melconian | Jun 1991 | A |
5244380 | Dobbeling et al. | Sep 1993 | A |
5388412 | Schulte-Werning et al. | Feb 1995 | A |
5560197 | Ansart et al. | Oct 1996 | A |
5588826 | Dobbeling et al. | Dec 1996 | A |
6018950 | Moeller | Feb 2000 | A |
6122917 | Senior | Sep 2000 | A |
6134877 | Alkabie | Oct 2000 | A |
7926278 | Gerendas et al. | Apr 2011 | B2 |
20020069644 | Stuttaford et al. | Jun 2002 | A1 |
20020100281 | Hellat et al. | Aug 2002 | A1 |
20050097894 | Tiemann | May 2005 | A1 |
20070062198 | Huth et al. | Mar 2007 | A1 |
20070180827 | Dawson et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
2356722 | May 1975 | DE |
19644378 | Apr 1998 | DE |
0239020 | Sep 1987 | EP |
0284819 | Oct 1988 | EP |
0321809 | Jun 1989 | EP |
0599055 | Jun 1994 | EP |
0704657 | Apr 1996 | EP |
1207273 | May 2002 | EP |
1482246 | Dec 2004 | EP |
2003286863 | Oct 2003 | JP |
Entry |
---|
International Search Report for PCT/EP2009/051763 mailed on Jun. 10, 2009. |
Number | Date | Country | |
---|---|---|---|
20110110761 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2009/051763 | Feb 2009 | US |
Child | 12857171 | US |