The field of the invention relates generally to gas turbine inlet air filtration, and more particularly, to a filter element having a corrugated or embossed nonwoven filter media.
Some known filter media constructs incorporate synthetic fibers or a blend of cellulose and synthetic fibers and utilizing a wet-laid paper making process to produce the substrate. In some other filter media constructs, an electro-spun technology is used to deposit a lightweight nanofiber coating on one or both sides of the filter media substrate. Typically the media substrate has a basis weight of 100-120 grams per square meter (g/m2), and the nanofiber layer has a basis weight of 0.5 g/m2 or less.
One problem associated with these known filter media constructs is the use of a stiffening binder or resin applied to the paper filter media to facilitate pleating of the paper filter media. However it is known that some of the binders used are cross-linked with formaldehyde based compounds. On occasion under climate conditions of high temperature and high humidity, off-gassing of formaldehyde can occur during filter manufacturing or during storage.
These known filter media constructs when used to filter inlet air of power generation gas turbines can permit fine dust particulates to penetrate the filter over the operating life of the filter. Particularly, when filter media formed from a cellulose/synthetic blended wet laid paper of a 100% synthetic wet laid paper, and utilizing resin stiffening binders, are used in a filter assembly, the initial fractional efficiency of the filter media range from a minimum of about 5% up to a maximum of about 30% capture of 0.3 to 0.4 μm particles when measured in accordance with ASHRAE 52.2-1999 test procedure. In composite filter media constructs with filter media formed from a cellulose/synthetic blended wet laid paper of a 100% synthetic wet laid paper, and including a nano-fiber layer, the initial fractional efficiency of the filter media is about 55% capture of 0.3 to 0.4 μm particles, at a pressure drop typically greater than 7.0 mm H2O, when measured in accordance with ASHRAE 52.2-1999 test procedure.
It is known that as much as 15 to 20 pounds of dust can penetrate known filter media over a 24,000 hour operating life because of this low initial efficiency. Exposing the turbine blades to dust over an extended time can cause serious and catastrophic fouling and erosion of the turbine blades. The current procedure of cleaning the turbine blades requires taking the turbine off-line at periodic intervals to water wash the blades clean. Turbine down time is expensive because the turbine is not operating and therefore, power generation is curtailed. It would be desirable to provide a higher efficiency filter media than the known filter media to reduce or eliminate turbine down time to clean the turbine blades and/or the replacement of damaged blades.
In one aspect, a gas turbine air inlet filter element is provided. The filter element includes a first end cap, a second end cap, and a filter media. The filter media includes a nonwoven synthetic fabric formed from a plurality of bicomponent synthetic fibers with a spunbond process, and having a bond area pattern that includes a plurality of substantially parallel discontinuous lines of bond area. The filter media has a minimum filtration efficiency of about 50%, measured in accordance with ASHRAE 52.2-1999 test procedure. The filter media also includes an embossing pattern or a plurality of corrugations. The embossing pattern or the corrugations are formed using opposing rollers at a temperature of about 90° C. to about 140° C.
In another aspect, a filter media for a filter element is provided. The filter media includes a nonwoven synthetic fabric formed from a plurality of bicomponent synthetic fibers with a spunbond process, and having a bond area pattern that includes a plurality of substantially parallel discontinuous lines of bond area. The filter media has a minimum filtration efficiency of about 50%, measured in accordance with ASHRAE 52.2-1999 test procedure. The filter media also includes an embossing pattern or a plurality of corrugations. The embossing pattern or the corrugations are formed using opposing rollers at a temperature of about 90° C. to about 140° C.
A filter element for a gas turbine inlet air filtration system and a filter media are described in detail below. The filter media includes a filter media substrate of a synthetic nonwoven fabric that is formed from bicomponent fibers by a unique spunbond process. The filter media is corrugated or embossed to provide efficient separation of pleats which provides large passageways for low restriction air flow on both the “clean” and “dirty” sides of the composite filter media. The filter media provides an initial filtration efficiency of about 50% retained capture of 0.3-0.4 μm particles, when tested in accordance with the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 52.2-1999 test procedure. The filter media has a quality factor (Qf) of greater than about 450, and in another embodiment, greater than about 500. Also, the filter media has a resistance (or pressure drop) of less than 2.5 mm water, measured in accordance with EN-1822 (1998).
Further, the filter media is more durable than known filter media and provides for lower pressure drop build-up because of less deflection of the filter media from the forces exerted on the filter media during the filtering and reverse cleaning operations. Also, the spunbond corrugated filter media is more efficient than known filter media at an equivalent or lower pressure drop. The bicomponent fibers used to form the filter media are finer than fibers used to form known filter media.
By “quality factor (Qf)” is meant the parameter defined by the equation: Qf=−25000log (P/100)/Δp
Where “P”=particle penetration in % of filter media thickness, and “Δp”=pressure drop across the media in Pascals.
Referring to the drawings,
Filter media 10 is a nonwoven fabric formed from synthetic bicomponent fibers using a spunbond process. Suitable bicomponent fibers are fibers having a core-sheath structure, an island structure or a side-by-side structure. Referring also to
Bicomponent fibers 30 have diameter of about 12 microns to about 18 microns which is finer than the known fibers used in traditional and common spunbond products. A unique aspect of base media substrate 12 is the bond pattern used to consolidate spunbond filter media 10. The bond pattern is defined by the embossing pattern of the calender rolls. The bond area of the spunbond bicomponent fibers in media 10 is about 10 percent to about 14 percent of the total area of the fabric as compared to the bond area of about 19 to 24 percent of traditional spunbond media used in filtration. The bond area provides for media durability and function while at the same time the bond points create areas of fused polymer that have zero air flow.
Referring also to
Any suitable synthetic bicomponent fiber 30 can be used to make the nonwoven fabric of filter media 10. Suitable materials for core 32 and sheath 34 of bicomponent fiber 30 include, but are not limited to, polyester, polyamid, polyolefin, thermoplastic polyurethane, polyetherimide, polyphenyl ether, polyphenylene sulfide, polysulfone, aramid, and mixtures thereof. Suitable materials for the sheath of the bicomponent fiber include thermoplastic materials that have a lower melting point than the material of the core of the bi-component fiber, for example polyester, polyamid, polyolefin, thermoplastic polyurethane, polyetherimide, polyphenyl ether, polyphenylene sulfide, polysulfone, aramid, and mixtures thereof.
Referring also to
Referring also to
In another exemplary aspect, filter media 10 is embossed using opposed embossing rolls.
Filter media 10 is made by forming a nonwoven fabric using a plurality of bicomponent synthetic fibers 30 with a spunbond process. Filter media 10 is then calendered with embossing calender rolls to form a bond area pattern 31 having a plurality of substantially parallel discontinuous lines 33 of bond area to bond synthetic bicomponent fibers 30 together to form nonwoven fabric base substrate 12. The formed filter media 10 has a filtration efficiency of at least about 50%, measured in accordance with ASHRAE 52.2-1999 test procedure. Filter media 10 is then corrugated using opposing corrugating rollers 40 and 50 at a temperature of about 90° C. to about 140° C. In an alternate embodiment, composite filter media 10 is embossed using opposing embossing rollers 100 and 102 at a temperature of about 90° C. to about 140° C.
In an alternate embodiment, a nanofiber layer may be applied by electro-blown spinning a polymer solution to form a plurality of nanofibers on at least one side of filter media 10. In the alternate embodiment the calendering step is performed after the application of the nanofiber layer. The resultant filter media has a filtration efficiency of at least about 75%, measured in accordance with ASHRAE 52.2-1999 test procedure. The nanofiber layer is formed by an electro-blown spinning process that includes feeding a polymer solution into a spinning nozzle, applying a high voltage to the spinning nozzle, and discharging the polymer solution through the spinning nozzle while injecting compressed into the lower end of the spinning nozzle. The applied high voltage ranges from about 1 kV to about 300 kV. The electro-blown spinning process of forming nanofibers and the unique apparatus used is described in detail in U.S. Patent Application Publication No. 2005/0067732. The electro-blown spinning process provides a durable three dimensional filtration layer of nanofibers that is thicker than known nanofiber filtration layers on known filter media. In the exemplary aspect the basis weight of the nanofiber membrane layer is about 0.6 g/m2 to about 20 g/m2, in another aspect, about 5 g/m2 to about 10 g/m2. The nanofibers in have an average diameter of about 500 nm or less.
Suitable polymers for forming nanofibers by the electro-blown spinning process are not restricted to thermoplastic polymers, and may include thermosetting polymers. Suitable polymers include, but are not limited to, polyimides, polyamides (nylon), polyaramides, polybenzimidazoles, polyetherimides, polyacrylonitriles, polyethylene terephthalate, polypropylene, polyanilines, polyethylene oxides, polyethylene naphthalates, polybutylene terephthalate, styrene butadiene rubber, polystyrene, polyvinyl chloride, polyvinyl alcohol, polyvinylidene chloride, polyvinyl butylene and copolymer or derivative compounds thereof. The polymer solution is prepared by selecting a solvent that dissolves the selected polymers. The polymer solution can be mixed with additives, for example, plasticizers, ultraviolet ray stabilizers, crosslink agents, curing agents, reaction initiators, and the like. Although dissolving the polymers may not require any specific temperature ranges, heating may be needed for assisting the dissolution reaction.
It can be advantageous to add plasticizers to the various polymers described above, in order to reduce the Tg of the fiber polymer. Suitable plasticizers will depend upon the polymer, as well as upon the particular end use of the nanofiber layer. For example, nylon polymers can be plasticized with water or even residual solvent remaining from the electrospinning or electro-blown spinning process. Other plasticizers which can be useful in lowering polymer Tg include, but are not limited to, aliphatic glycols, aromatic sulphanomides, phthalate esters, including but not limited to, dibutyl phthalate, dihexl phthalate, dicyclohexyl phthalate, dioctyl phthalate, diisodecyl phthalate, diundecyl phthalate, didodecanyl phthalate, and diphenyl phthalate, and the like.
The following examples are presented for the purpose of illustration only and are not intended to limit the scope of the claims.
Flat sheets of filter media 10 test samples having various basis weights were compared to a comparative base media substrate in a flat sheet fractional efficiency test in accordance ASHRAE 52.2-1999 test method. Air containing KCl particles was directed through each test sample at a flow rate of about 10 ft/min.
Flat sheets of filter media 10, and filter media 10 including a nanofiber layer were compared to a comparative base media substrate with and without a nanofiber layer in a flat sheet fractional efficiency test in accordance ASHRAE 52.2-1999 test method. Air containing KCl particles was directed through each test sample at a flow rate of about 10 ft/min.
Flat sheets of filter media 10, and filter media 10 including a nanofiber layer were compared to a comparative base media substrate with and without a nanofiber layer in a flat sheet pressure drop test in accordance ASHRAE 52.2-1999 test method. Air containing KCl particles was directed through each test sample at a flow rate of about 10 ft/min.
Filter element 70 containing filter media 10 was compared to a known filter element formed from a wet-laid synthetic filter media substrate, and a known filter element formed from a wet-laid cellulose-synthetic blend filter media substrate in a 200 hour duration dust rejection test. Dust laden air was directed into a test filter module having a capacity of at least 3,000 CFM with the dust concentration feed rate of 0.57 g/m3. The test filters were pulse-jet cleaned at a predetermined cycle time at a pulse air pressure of 100 psig (700 kPa gauge). The test filter module differential pressure was monitored throughout the 200 hour test duration. The 200 hour test procedure is described in the Saudi Aramco Materials System Specification 32-SAMSS-008, titled INLET AIR FILTRATION SYSTEMS FOR COMBUSTION GAS TURBINES, issued Oct. 26, 2005, Appendix II, phase 2.
The above described filter elements 70 formed from filter media 10 can be used for filtering an air stream in almost any application, for example, for filtering gas turbine inlet air. The unique construction of filter media 10 is more durable than known filter media and provides for lower pressure drop build-up because of less deflection from the forces exerted on the filter media during the filtering and reverse cleaning operations due to the corrugation construction. Filter elements 70 have produced an average efficiency greater than about 50% capture of the most penetrating particle size of aerosol or dust (about 0.3 to about 0.4 micron) as compared to about 5-30% of known filter elements.
The example filter media of Examples 1-2 and Comparative Examples 3-7 illustrate a comparison of embodiments of filter media 10 with known filter media. Efficiency, resistance and quality factor were measured for each filter media of Examples 1-2 and Comparative Examples 3-7. Efficiency was measured in accordance with ASHRAE 52.2-1999 test procedure, resistance was measured in accordance with EN-1822 (1998), and quality factor Qf was calculated as described above.
Example 1 is a spunbond polyester bicomponent fiber filter media substrate, and Example 2 is the filter media substrate of Example 1 plus a 2 g/m2 nanofiber layer formed by an electro-blown spinning process. Comparative Example 3 is a known drylaid polyester filter media substrate, and Comparative Example 4 is the known dry-laid polyester filter media substrate of Comparative Example 3 plus a 2 g/m2 nanofiber layer. Comparative Example 5 is a wet-laid synthetic paper plus a <0.5 g/m2 nanofiber layer. Comparative Example 6 is a wet-laid synthetic paper, and Comparative Example 7 is the wet-laid synthetic paper of Example 6 plus a 20 g/m2 meltblown fiber layer. The example results are shown in Table I below. When Example 2 is compared to composites in Comparative Examples 4, 5, and 7 efficiency is not sacrificed at the expense of reducing resistance which yields the associated high Quality Factor values.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
This application is a continuation in part of U.S. patent application Ser. No. 12/201,631, filed Aug. 29, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 12/184,634, filed Aug. 1, 2008, which is a continuation-in-part of U.S. patent application Ser. No. 11/843,228, filed Aug. 22, 2007, which claims priority to Provisional Patent Application Ser. No. 60/893,008, filed Mar. 5, 2007.
Number | Date | Country | |
---|---|---|---|
60893008 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12201631 | Aug 2008 | US |
Child | 12275751 | US | |
Parent | 12184634 | Aug 2008 | US |
Child | 12201631 | US | |
Parent | 11843228 | Aug 2007 | US |
Child | 12184634 | US |