1. Technical Field
The disclosure generally relates to seals used in gas turbine engines.
2. Description of the Related Art
Various gas turbine engine components are subjected to heating and cooling cycles that cause the components to expand and contract. Expansion and contraction causes challenges in forming seals between components to prevent gas leakage.
Turbine vane assemblies are examples of components that typically experience expansion and contraction during use. In order to prevent gas leakage between adjacent vanes of a vane assembly, feather seals have been used. A feather seal, which is typically configured as a strip of metal, is positioned between opposing slots of adjacent vanes. Notably, when the vanes are cold, the feather seal typically floats loosely within the opposing slots. However, after the vanes expand due to heating, the feather seal tends to fit more tightly within the opposing slots.
Designing a feather seal can be quite challenging. In particular, the width of a feather seal may be established so that the seal will not fall out of the slots when the vanes cool and contract. However, the width should be narrow enough so that the vanes do not crush the feather seal when the vanes heat and expand.
Systems involving feather seals are provided. In this regard, an exemplary embodiment of a vane assembly for a gas turbine engine comprises: a first mounting platform having a first slot; a first airfoil extending from the first mounting platform; and a feather seal having opposing faces, a first side extending between the faces, and a first tab, the first tab extending outwardly beyond the first side; the first slot being sized and shaped to receive the feather seal including the first tab.
An exemplary embodiment of a feather seal for a gas turbine engine comprises: opposing faces; a first side extending between the faces; and a first tab extending outwardly beyond the first side, the first tab being located in a plane defined by the opposing faces.
An exemplary embodiment of a gas turbine engine comprises: a compressor; a combustion section; and a turbine operative to drive the compressor responsive to energy imparted thereto by the combustion section, the turbine having a vane assembly, the vane assembly having a first vane comprising: a first mounting platform having a first slot; a first airfoil extending from the first mounting platform; and a feather seal having opposing faces, a first side and a first tab, the first side extending between the faces, the first tab extending outwardly beyond the first side; the first slot being sized and shaped to receive the feather seal including the first tab.
Other systems, methods, features and/or advantages of this disclosure will be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be within the scope of the present disclosure.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Several exemplary embodiments of systems involving feather seals will now be described in greater detail. In this regard, at least some of these embodiments involve a feather seal that incorporates at least a first tab that effectively widens the feather seal at the location of the tab. The tab is configured to be received by a corresponding feature of a vane. By way of example, the feature can be a cavity or through-hole into which the tab is inserted. So configured, the feather seal can be designed narrow enough to limit component weight, while the tab effectively widens the feather seal. That is, the tab locally widens the feather seal so that the feather seal does not tend to fall out of place when the vane contracts during cooling. Thus, one or more tabs of a feather seal can be sized for preventing fall-out and remaining portions of the feather seal can be sized to accommodate crushing considerations.
In this regard, an embodiment of a system involving feather seals is depicted schematically in
Feather seal 104 is generally elongate, exhibiting a longitudinal axis, and is planar. In this embodiment, the feather seal is formed of a strip of material, e.g. a Cobalt alloy, such as Haynes-188. The feather seal has opposing faces 120, 122, sidewalls 124, 126 extending between the faces, and endwalls 128, 130 extending between the faces and between the sidewalls. In cross-section, the feather seal of this embodiment is generally rectangular.
Tabs 131, 132, 133 and 134 extend outwardly beyond the sidewalls of the feather seal. In particular, tabs 131 and 133 extend beyond sidewall 124, and tabs 132 and 134 extend beyond sidewall 126. In this embodiment, the tabs are generally rectangular and are positioned in opposing pairs along a length of the feather seal. In other embodiments, various other numbers, shapes and/or arrangements of tabs can be used. For instance, in some embodiments, one or more portions of the tabs could be tapered, such as by incorporating a chamfer.
In the installed position, the feather seal is held within slot 116 of vane 102 and slot 206 of vane 202. Specifically, slot 116 is defined by a backwall 210, and walls 212 and 214 that are spaced from each other and that extend from backwall 210. Similarly, slot 206 is defined by a backwall 220, and walls 222 and 224 that are spaced from each other and that extend from 220 backwall.
Each of the slots communicates with a corresponding through-hole that is configured to receive a tab. In this case, slot 116 communicates with through-hole 231 and slot 206 communicates with through-hole 232. In this embodiment, the through-holes are formed by the material of the walls that define the rails. Additionally, each incorporates a recess.
In the configuration depicted in
Another embodiment of a vane is depicted schematically in
In this configuration, a tab of a feather seal (not shown) can be inserted into the cavity via the entrance. In such an embodiment, any gas leakage that may occur in a vicinity of the tab can be contained by the sealed cavity. Note that in this embodiment, construction of the sealed cavity is facilitated by casting a lower portion 410 of material that defines the cavity integrally with the outer mounting platform; however, other techniques can be used in other embodiments. This casting results in an opening 412 for facilitating release and holding of the component during manufacture. Sealing of the cavity is accomplished by attaching a wall 414, in this case a plate, to the cast portion. In some embodiments, such as here, this can accomplished by welding the plate to the outer mounting platform.
Another embodiment of a vane is depicted schematically in
In this embodiment, the sealed cavity is constructed by casting a lower portion 510 of the cavity integrally with the outer mounting platform. This casting results in an opening 512 for facilitating release of the component during manufacture. In contrast to the embodiment of
It should be emphasized that the above-described embodiments are merely possible examples of implementations set forth for a clear understanding of the principles of this disclosure. Many variations and modifications may be made to the above-described embodiments without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the accompanying claims.
The U.S. Government may have an interest in the subject matter of this disclosure as provided for by the terms of contract number N00019-02-C-303 awarded by the United States Air Force.
Number | Name | Date | Kind |
---|---|---|---|
4477086 | Feder et al. | Oct 1984 | A |
4524980 | Lillibridge et al. | Jun 1985 | A |
4749333 | Bonner et al. | Jun 1988 | A |
5141395 | Carroll et al. | Aug 1992 | A |
5531457 | Tibbott et al. | Jul 1996 | A |
5709530 | Cahill et al. | Jan 1998 | A |
5755556 | Hultgren et al. | May 1998 | A |
5868398 | Maier et al. | Feb 1999 | A |
6109843 | Descoteaux | Aug 2000 | A |
6171058 | Stec | Jan 2001 | B1 |
6267553 | Burge | Jul 2001 | B1 |
6315298 | Kildea et al. | Nov 2001 | B1 |
6796769 | Moroso | Sep 2004 | B2 |
7186079 | Suciu et al. | Mar 2007 | B2 |
7625174 | Drerup et al. | Dec 2009 | B2 |
20060182624 | London et al. | Aug 2006 | A1 |
20070140843 | Drerup et al. | Jun 2007 | A1 |
20090096174 | Spangler et al. | Apr 2009 | A1 |
20090269188 | Martin | Oct 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090016873 A1 | Jan 2009 | US |