Disclosed embodiments are generally related to combustion turbine engines, such as gas turbine engines and, more particularly, to a combustion system having a reduced combustion residence time.
In gas turbine engines, fuel is delivered from a fuel source to a combustion section where the fuel is mixed with air and ignited to generate hot combustion products that define working gases. The working gases are directed to a turbine section where they effect rotation of a turbine rotor. It is known that production of NOx emissions from the burning fuel in the combustion section may be reduced by providing a portion of the fuel to be ignited downstream from a main combustion zone. This approach is referred to in the art as a distributed combustion system (DCS). See, for example, U.S. Pat. Nos. 8,375,726 and 8,752,386.
It is also known that certain ducting arrangements in a gas turbine engine may be configured to appropriately align the flow of working gases, so that, for example, such flow alignment may be tailored to avoid the need of a first stage of flow-directing vanes in the turbine section of the engine. See for example U.S. Pat. Nos. 7,721,547 and 8,276,389. Each of the above-listed patents is herein incorporated by reference.
The inventors of the present invention have recognized synergies that result from an innovative integration of what up to the present invention have been perceived as seemingly independent combustor design approaches, such as may involve a distributed combustion system (DCS) approach, and an advanced ducting approach in the combustor system of a combustion turbine engine, such as a gas turbine engine. With the integration of these design approaches, in certain non-limiting embodiments, it is now feasible to achieve a decreased static temperature and a reduced combustion residence time, each of which is conducive to reduce NOx emissions to be within acceptable levels at turbine inlet temperatures of approximately 1700° C. (3200° F.) and above.
In the following detailed description, various specific details are set forth in order to provide a thorough understanding of such embodiments. However, those skilled in the art will understand that embodiments of the present invention may be practiced without these specific details, that the present invention is not limited to the depicted embodiments, and that the present invention may be practiced in a variety of alternative embodiments. In other instances, methods, procedures, and components, which would be well-understood by one skilled in the art have not been described in detail to avoid unnecessary and burdensome explanation.
Furthermore, various operations may be described as multiple discrete steps performed in a manner that is helpful for understanding embodiments of the present invention. However, the order of description should not be construed as to imply that these operations need be performed in the order they are presented, nor that they are even order dependent, unless otherwise indicated. Moreover, repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may. It is noted that disclosed embodiments need not be construed as mutually exclusive embodiments, since aspects of such disclosed embodiments may be appropriately combined by one skilled in the art depending on the needs of a given application.
The terms “comprising”, “including”, “having”, and the like, as used in the present application, are intended to be synonymous unless otherwise indicated. Lastly, as used herein, the phrases “configured to” or “arranged to” embrace the concept that the feature preceding the phrases “configured to” or “arranged to” is intentionally and specifically designed or made to act or function in a specific way and should not be construed to mean that the feature just has a capability or suitability to act or function in the specified way, unless so indicated.
In one non-limiting embodiment, each flow path 12 includes a cone 16 and an integrated exit piece (IEP) 18. In one non-limiting embodiment, each cone 16 has a cone inlet 26 having a circular cross section and configured to receive the combustion gases from a combustor outlet (not shown). The cross-sectional profile of cone 16 narrows toward a cone outlet 28 that is associated with an IEP inlet 30 in fluid communication with each other.
Based on the narrowing cross-sectional profile of cone 16, as the flow travels from cone inlet 26 to cone outlet 28, the flow of combustion gases is accelerated to a relatively high subsonic Mach (M) number, such as without limitation may comprise a range from approximately 0.3 M to approximately a 0.8 M, and thus cone 16 may be generally conceptualized as a non-limiting embodiment of a flow-accelerating structure. Accordingly, the combustion gases may flow through cone 16 with an increasing flow speed, and as a result, this flow of combustion gases can experience a decreasing static temperature in cone 16.
For example, see
The inventors of the present invention have cleverly recognized that by injecting fuel and air at locations of the cone having a relatively lower static temperature, such as a location between cone inlet 26 and cone outlet 28, it is feasible to effectively bring the reaction temperature below the NOx formation threshold even though, in certain non-limiting embodiments, the firing temperature may be approximately 1700° C. and higher. That is, the injector location is in a location where the static temperature is lower compared to the static temperature at cone inlet 26. For the sake of simplicity of illustration,
As illustrated in
Returning to
It will be appreciated that in one non-limiting embodiment injectors 64 may be disposed to provide jet in cross-flow injection, as schematically illustrated in
In operation, disclosed embodiments are expected to be conducive to a combustion system capable of realizing approximately a 65% combined cycle efficiency or greater in a gas turbine engine. Disclosed embodiments are also expected to realize a combustion system capable of maintaining stable operation at turbine inlet temperatures of approximately 1700° C. and higher while maintaining a relatively low level of NOx emissions, and acceptable temperatures in components of the engine without an increase in cooling air consumption.
While embodiments of the present disclosure have been disclosed in exemplary forms, it will he apparent to those skilled in the art that many modifications, additions, and deletions can be made therein without departing from the spirit and scope of the invention and its equivalents, as set forth in the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/041948 | 7/24/2015 | WO | 00 |