This invention relates to gas turbine combustor technology and, more specifically, to a transition piece utilized for flowing hot combustion gases between the turbine combustor and a first stage turbine nozzle.
It is well known that air pollution emissions are typically produced in gas turbines burning conventional hydrocarbon fuels. Those emissions are usually oxides of nitrogen, carbon monoxide and unburned hydrocarbons. It is also well known that both oxidation of molecular nitrogen and oxidation of carbon monoxide to carbon dioxide are dependent upon the temperature of the hot gas stream produced by the turbine combustor which flows through the transition piece to the first stage nozzle. To improve the performance of the combustor with respect to emissions, gas temperatures have to be high enough for an adequate period of time to oxidize carbon monoxide without being so high that excessive amounts of nitrogen oxides are produced.
Various concepts have been proposed to maintain the reaction zone temperature below the level at which NOx is formed or by reducing the residence time at high temperatures such that there is insufficient time for the NOx formation reaction to go forward, or both. One method of reducing the temperature of the reaction zone in the combustor is to provide a lean mixture of fuel and air prior to combustion. The lean mixture may be achieved at least in part by supplying dilution air to the combustor liner to absorb heat and reduce the temperature rise to a level where thermal NOx is not formed. However, in many cases, even with lean premixed fuel and air, the temperatures are sufficiently high to produce undesirable emissions.
It has also been proposed to supply dilution air to the transition piece between the combustor and the first stage nozzle. For example, in one prior transition piece, two dilution holes are located adjacent the outlet of the transition piece, close to the first stage nozzle.
In commonly owned Publication No. US 2005/0204741 A1, there is provided a transition piece dilution air management system which promotes dilution mixing and emissions reduction. Particularly, the dilution air management system provides dilution air jets in the transition piece at predetermined axial and circumferential locations to optimize reductions in emissions consistent with efficient use of compressor discharge air. However, undesirable emissions remain a problem notwithstanding the various prior proposals.
In one exemplary but nonlimiting embodiment, the present invention relates to a gas turbine transition piece comprising a duct body having a forward end and an aft end, the duct body defining an enclosure for confining a flow of combustion products from a combustor to a turbine first stage nozzle; and a plurality of dilution holes formed in the duct body, at locations defined by selected X, Y, Z coordinate sets listed in Table I, the X, Y and Z coordinates measured from a zero reference point at a center of an exit plane of the transition piece.
In another aspect, the invention relates to a gas turbine transition piece comprising a duct body having a forward end and an aft end, the body defining an enclosure for confining a flow of combustion products from a combustor to a turbine first stage nozzle; and a plurality of dilution holes formed in the duct body at locations defined by selected sets of X, Y, Z coordinate sets listed in Table I, the X, Y, and Z coordinate sets measured from an origin at a center of an exit plane at the aft end of the transition piece, wherein the duct body has a length of substantially 20 inches, and wherein the plurality of dilution holes have diameters in a range of from 0.3 to 1.75 inches.
In still another aspect, the invention relates to a gas turbine transition piece comprising a duct body having a forward end and an aft end and a length of substantially 20 inches, the body defining an enclosure for confining a flow of combustion products from a combustor to a turbine first stage nozzle; and between 5 and 17 dilution holes formed in the duct body, wherein the plurality of dilution holes have diameters in a range of from 0.3 to 1.75 inches, and a combined cross-sectional open area of between 2 and 7.5 square inches, the dilution holes having locations selected from any combination of X, Y and Z coordinate sets listed in Table I.
The invention will now be described in connection with the drawings identified below.
Referring now to the drawings, and particularly to
In a typical arrangement, the combustor liner may have one or more dilution holes 24 that were moved from liner 12 to the transition piece 16 to allow a significant reduction in emissions and improved premix flame stability.
With further reference to
In an exemplary but nonlimiting embodiment, plural dilution holes 32 (three are shown in
The number of dilution holes provided in the transition piece or duct body 16 may vary between five (5) and seventeen (17), with eleven (11) being the optimum number in the exemplary embodiment. The holes 32 lie along the transition piece or duct body in an envelope within one inch in any direction along the surface of the transition piece from the locations of the holes determined by the X, Y and Z coordinates. In this regard, any combination of the twenty eight hole location sites listed in Table I may be selected for the 5-17 dilution holes. The dilution hole diameter may be in the range of from 0.3 to 1.75 in. and the combined open surface area of the dilution holes should be in the range of from 2 to 7.5 sq. inches. The dilution holes 32 may have uniform or different diameters within the specified range.
The dilution hole arrangement as described allows for longer combustion residence time (due to increased temperature of combustion gases) and hence additional CO burnout. This also enables more stable formation of the combustion flame zone, and improves flame stability instead of quenching the combustion process prior to complete burning of hydrocarbons. The end result is a significant reduction in harmful emissions and improved liner durability.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.