The present embodiments are directed to axial compressors. More specifically, the present embodiments are directed to methods of modifying a compressor wheel, methods of mounting a blade to a compressor wheel, and compressor wheel assemblies.
Gas turbine systems generally include an axial compressor including compressor wheels and having a number of stages. Working fluid flowing into the axial compressor is compressed at each stage. The working fluid flows in a direction generally parallel to the axis of rotation of the axial compressor. Each stage includes blades mounted to a rim of a rotatable compressor wheel in a spaced relationship. Each blade has an airfoil and a base. The base is held in an axially-oriented slot in the compressor wheel. A typical compressor wheel may have dozens of blades mounted thereon.
The base of each blade may have a dovetailed portion that is received by and interlocks with a dovetail-shaped axially-oriented slot along the rim of the compressor wheel to secure the blade to the compressor wheel. The blade dovetails may be secured to the compressor wheel by a process called staking, where material at the edge of the compressor wheel slot is plastically deformed and displaced into a void created by a local chamfer of the blade dovetail. The radial faces of compressor wheel dovetails are staked in order to axially retain the blades in the radial slots. Specifically, each blade may be placed within an axial slot in the rim and then staked into place at both ends by deforming the metal material around the blade dovetail with a tool that conventionally is similar to a nail punch. This process is repeated for each blade for each wheel assembly stage. Staking economically and mechanically secures a blade or other attachment to the slot in the compressor wheel or other type of wheel.
In an inspection or an overhaul process, the blades may be removed from the compressor wheel and the original stakes may be ground out. There are a finite number of attachments due to a limited number of viable staking locations about the compressor wheel. After several airfoil swap-outs, these areas are covered in old stake marks with no room for new ones. As such, the compressor wheel generally must be replaced once these staking locations have been consumed, even if the compressor wheel is otherwise still operable.
In an embodiment, a method of modifying a compressor wheel includes forming a stake-receiving feature having a reconditioned surface on a radial face of an axial slot in a rim of the compressor wheel. The forming includes removing material from the compressor wheel to remove a plurality of stake marks in the radial face.
In another embodiment, a gas turbine wheel assembly includes a gas turbine wheel rotatable about an axis of a turbine and a plurality of blades. The gas turbine wheel has a plurality of axial slots. Each axial slot has a radial face. At least one radial face of at least one axial slot includes a stake-receiving feature having a reconditioned surface. Each blade includes a base and an airfoil extending from the base. Each blade is received in one of the axial slots. Material displaced at the reconditioned surface of the stake-receiving feature by staking axially retains the blades in the axial slot.
In another embodiment, a method of mounting a blade to a gas turbine wheel includes inserting a base of the blade into an axial slot of the gas turbine wheel and staking the base of the blade in the axial slot by displacing material at a reconditioned surface of a stake-receiving feature on a radial face of the axial slot to axially retain the base of the blade in the axial slot.
Other features and advantages of the present invention will be apparent from the following more detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts.
Provided is a method of modifying a compressor wheel, a gas turbine wheel assembly, and a method of mounting a blade to a gas turbine wheel.
Embodiments of the present disclosure, for example, in comparison to concepts failing to include one or more of the features disclosed herein, extend the lifespan of a gas turbine wheel, provide a reconditioned surface for staking the gas turbine wheel to a blade, permit additional staking operations during the lifespan of a gas turbine wheel, solve the problem of loss of retention area that occurs with repetitive staking, reduce or eliminate the need for rim staking, which is a risky operation due to the proximity to the airfoil base fillet, save a gas turbine wheel from otherwise becoming scrapped, provide a rough cut and/or a skim cut to a radial face of a gas turbine wheel, or combinations thereof.
Staking, as used herein, refers to any process that creates a region of plastically deformed metal such that component retention is possible.
A reconditioned surface, as used herein, refers to a fresh surface that has not been exposed to operational conditions, as opposed to an in-service surface that has been exposed to operational conditions.
A skim cut, as used herein, refers to a thin cut to remove a relatively small amount of material at a surface, preferably to provide a reconditioned surface with a better finish and a closer tolerance to a desired surface shape relative to a fresh surface after a rough cut.
Referring to
Referring to
Referring to
The stake-receiving feature 40 may be formed to have any contour that provides a reconditioned surface 42 without stake marks 34. Referring to
Referring to
In some embodiments, only one or a very small number of axial slots 16 on the gas turbine wheel 12 have a radial face 32 that no longer has sufficient material 30 for additional staking. In such embodiments, the gas turbine wheel 12 may be modified to provide a stake-receiving feature 40 having a reconditioned surface 42 with additional material for staking to only those axial slots 16 in need thereof, one such modified axial slot 16 being shown in
In some embodiments, the process cuts a chamfer or round-over feature into the radial face 32 of the gas turbine wheel 12 to expose virgin metal for stakes. In some embodiments, the cut dimensions are selected and analyzed such that there is no life debit or increase in dovetail 36 stress as a result of the cut. This cut creates new room for retention stakes on the gas turbine wheel 12, but it may be difficult to select initiation and termination endpoints 52 for the cut, as this procedure may have the propensity to increase local stress in the gas turbine wheel 12 and blade 14 dovetail 36. Special care is preferably taken to find endpoint 52 locations where this effect is minimized.
Since the modification to the gas turbine wheel 12 effectively may decrease the length of the axial slot 16, it may be necessary to replace the blade 14 and/or one or both of the spacers 28 with a shorter version or to machine the base 20 and/or one or both of the spacers 28 to provide an assembly having a total length to accommodate the decreased length of the axial slot 16.
In some embodiments, the shape and location of the stake-receiving feature 40 may be selected to minimize local stress in the gas turbine wheel. The machining operation itself is preferably simple. In some embodiments, a rough cut is followed by a skim cut. In some embodiments, only a series of skim cuts may be needed. In some embodiments, only a single skim cut may be needed. The rough cut and/or the skim cut may be performed by any appropriate cutting device, including, but not limited to, a lathe, a mill, a hand plane, a hand tool, a hand grinder, a machine grinder, a saw, a hand file, or any combination thereof. The cutting and staking are preferably performed without introducing a crack and/or any other unintended defect in the gas turbine wheel 12 that may otherwise reduce or lessen the operational lifespan of the gas turbine wheel 12.
Although the gas turbine wheel 12 is shown as staked to the base 20 of the blade 14 in the figures, the base 20 may be alternatively staked to the gas turbine wheel 12. In such embodiments, the radial face of the base 20 may be deformed to displace material and prevent or limit axial movement of the base 20 in the axial slot 16. In such embodiments, a portion of the radial face of the base 20 may be removed along with stake marks in the radial face to provide a stake-receiving feature having a reconditioned surface. This stake-receiving feature may have any appropriate contour, such as any contours similar to the stake-receiving feature 40 of a modified gas turbine wheel 12.
While the invention has been described with reference to one or more embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. In addition, all numerical values identified in the detailed description shall be interpreted as though the precise and approximate values are both expressly identified.
Number | Name | Date | Kind |
---|---|---|---|
3952395 | Crossman | Apr 1976 | A |
4812107 | Barcella et al. | Mar 1989 | A |
5980204 | Chevrette | Nov 1999 | A |
6158961 | Kehl et al. | Dec 2000 | A |
6219916 | Walker et al. | Apr 2001 | B1 |
6666653 | Carrier | Dec 2003 | B1 |
7594799 | Miller et al. | Sep 2009 | B2 |
8061995 | Prince et al. | Nov 2011 | B2 |
8601689 | Hathiwala et al. | Dec 2013 | B2 |
8727733 | Thermos et al. | May 2014 | B2 |
8899919 | Heinzelmaier et al. | Dec 2014 | B2 |
8992180 | Agaram et al. | Mar 2015 | B2 |
9103221 | Torkaman et al. | Aug 2015 | B2 |
20080267781 | Becker | Oct 2008 | A1 |
20090077795 | Prince | Mar 2009 | A1 |
20090252611 | Tipton | Oct 2009 | A1 |
20090297351 | Brahmasuraih | Dec 2009 | A1 |
20120177498 | Yarava | Jul 2012 | A1 |
20130051947 | Holmes | Feb 2013 | A1 |
20130216387 | Torkaman | Aug 2013 | A1 |
20160305259 | Evans | Oct 2016 | A1 |
20170198592 | Colletti et al. | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
2012229639 | Nov 2012 | JP |
Entry |
---|
“New technique allows replacement of compressor blades in-situ”, dated Aug. 11, 2011, 2 pages, available at http://www.ccj-online.com/replace-compressor-blades-in-situ/. |
Extended European Search Report and Opinion issued in connection with corresponding EP Application No. 17184781.7 dated Dec. 8, 2017. |
Number | Date | Country | |
---|---|---|---|
20180038381 A1 | Feb 2018 | US |