1. Field of the Invention
The present invention relates to a gas turbine.
2. Description of Related Art
A gas turbine is equipped with a compressor, a combustor, and a turbine. In the gas turbine, air is compressed in the compressor and flows into the combustor where it is mixed with fuel and combustion occurs. The combustion gas flows into the turbine where energy is extracted from the gas to rotate the compressor and to drive a generator to generate electricity. After flowing through the turbine, the combustion gas is exhausted through an exhaust diffuser.
The exhaust diffuser, consisting of parts 5, 6, 7, and 8 is connected coaxially to the downstream end of the turbine. The exhaust diffuser consists of exhaust casing 6 which encases gasflow path 5 and multiple struts 8 which support journal bearing 7 which in turn supports rotor 1.
Each strut 8 is equipped with strut main body 8a, that supports journal bearing 7, and strut cover 8b that covers and protects strut main body 8a from the combustion gas F.
In the above conventional gas turbine, strong shock waves can form at the leading edge of each strut cover 8b, resulting in reduced turbine performance.
As the combustion gas F, having high Mach number (for example, M=0.65), flows over the strut leading edge, the flow speed rapidly increases to achieve supersonic speed. A shock is generated in the regions indicated by “a” of
This effect on turbine efficiency is increased when the ambient temperature (temperature at the compressor inlet) is low. The amount of air flowing into the gas turbine at low ambient temperature is larger than that at normal ambient temperature, and as a result, the Mach number of the combustion gas flowing into the exhaust diffuser is increased. Accordingly, the shock wave generated at the leading edge LE becomes stronger, resulting in further reductions in turbine efficiency.
In view of the above problems, an object of the present invention is the provision of a gas turbine which can prevent reduction of turbine efficiency caused by the shock wave generated at struts of the exhaust diffuser.
In order to solve the above problems, the following means is adopted in the present invention.
The shape of the strut cover, 8b of
The present invention and its use in the gas turbine are explained below with reference to the figures. However, as a matter of course, the present invention is not limited to the present embodiment.
Multiple moving blades 34 attached to rotor 32 and also multiple stationary vanes 33 attached to casing 31 (stationary member side) are equipped in turbine 30. Moving blades 34 and stationary vanes 33 are alternately placed along the rotational shaft line of rotor 32. When rotor 32 is connected with a generator (not shown), power generation can be carried out.
Casing 31 forms combustion gas flow path 35 therein by covering the periphery of moving blades 34 and rotor 32. Casing 31 corresponds to a combination of turbine casing 3 and exhaust casing 6 of
The details of the shape of strut 8 is described as follows:
The outer shape of the cross-section of strut cover 102 is a wing shape in which the thickness of leading edge LE1 is gradually increased along the flow direction of the combustion gas F. The strut leading edge of the present invention is elliptical in shape, compared to semi-circular for the conventional strut.
Using the leading edge LE1 with the wing shape being tapered with an elliptical shape, the combustion gas F flowing into the leading edge LE1 can flow along a smoothly curved surface of the leading edge LE1. As indicated by the dashed line a shown in
In the present embodiment, the trailing edge TE1 has a wing shape as well as the leading edge LE1, however, the shape of the trailing edge TE1 is not limited, the trailing edge TE1 may have the obtuse head shape or rectangle as if curved portion is simply cut off.
Furthermore, the outer shape of strut cover 102 may be an NACA blade in a cross-section thereof in addition to the shape shown in
Number | Date | Country | |
---|---|---|---|
Parent | 10314212 | Dec 2002 | US |
Child | 11196388 | Aug 2005 | US |