The present invention relates generally to valves such as gas valves.
A number of gas-fed appliances are known. A gas-fed appliance typically employs a gas valve to control the flow of gas to a burner in which the gas is burned to produce heat. In many cases, a gas valve either permits gas to flow, or ceases to permit gas to flow in response to a control signal from a control device such as a thermostat or other controller. A need remains for improved gas valves.
The present invention relates generally to an improved gas valve. An illustrative but non-limiting example of the present invention may be found in a gas valve that includes a valve body that defines a valve cavity having a valve cavity wall. One or more grooves may be formed in the valve cavity wall, and a resilient elastomeric seat may be secured within each of the one or more grooves. The elastomeric seats may extend radially from the one or more grooves and at least partially into the valve cavity. A valve member may be disposed within the valve cavity, and may be movable from an open position where the valve member does not engage the one or more elastomeric seats, and a closed position where the valve member does engage one or more elastomeric seats. In some illustrative embodiments, the gas valve may be configured to permit removal of an elastomeric seat and installation of a replacement elastomeric seat.
It is recognized that providing a groove in the valve cavity wall to accept an elastomeric seat may increase the sealing surface area between the valve body and the elastomeric seat. This may be beneficial when, for example, the valve body is die cast or otherwise formed and includes porous areas. Porous areas that are at or near sealing surfaces can be prone to leakage, which can be undesirable in gas valve and other applications. Increasing the sealing surface area between the valve body and the elastomeric seat can, in some cases, reduce leakage. While reduced leakage may be one benefit that may be realized by providing a groove that accepts an elastomeric seat, it is contemplated that achieving such a benefit is not required in all embodiments. The structure of the gas valve may provide other benefits even when the valve body does not contain porous areas and/or when reduced leakage is not required or even desired.
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures, Detailed Description and Examples which follow more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Although examples of construction, dimensions, and materials are illustrated for the various elements, those skilled in the art will recognize that many of the examples provided have suitable alternatives that may be utilized.
In the illustrative embodiment, a groove 16 is disposed within valve cavity wall 14. it is contemplated that groove 16 may be milled, ground, molded or otherwise formed within valve cavity wall 14. In some instances, groove 16 may extend around at least a substantial portion of valve cavity wall 14, and more preferably, all the way around the valve cavity wall. In some cases, as illustrated, groove 16 may have an at least substantially rectangular profile, but this is not required. It is contemplated that groove 16 may have a rounded profile, a T-shaped profile (not shown), or any other profile that may be adapted to accommodate a particular elastomeric seat.
In some cases, shaft 22 and disk 24 may be integrally formed, or separately formed and subsequently secured together, as desired. Valve member 20 may be formed of metal, plastic or any other suitable material or material combination, as desired. In particular instances, valve member 20 may be formed of a lightweight metal material such as aluminum.
In the illustrative embodiment, valve member 20 may be movable between an open position in which gas flow is permitted through valve cavity 12, and a closed position in which gas does not flow through valve cavity 12. Valve member 20 may be moved in any suitable manner known in the art. For example, valve member 20 may move up and down (in the illustrated orientation) in response to a solenoid, an electric motor, a spring force, or any other appropriate movement mechanism, as desired. In this, upper and lower are relative terms pertaining to the illustrated embodiment. It will be recognized that gas valve 18 may function in any spatial orientation.
In the illustrative embodiment, an elastomeric seat 26 may be disposed within groove 16. In some instances, elastomeric seat 26 may be held in place within groove 16 via a compressive and/or interference fit resulting from the relative dimensions and/or shape of groove 16 and elastomeric seat 26. In some cases, and as shown in
In some embodiments, and as illustrated in
In the illustrative embodiment, valve cavity 12 may be considered as including a lower chamber 30 disposed below elastomeric seat 26 and an upper chamber 32 disposed above elastomeric seat 26. In
In some instances, a first groove 42 and/or a second groove 44 may be disposed within valve cavity wall 40. First groove 42 and/or second groove 44 may be milled, ground, molded or otherwise formed within valve cavity wall 40. In some instances, first groove 42 and second groove 44 may extend around at least a substantial portion of valve cavity wall 40, and more preferably, all the way around valve cavity wall 40. In some cases, as illustrated, first groove 42 and/or second groove 44 may have an at least substantially rectangular profile, but this is not required. For example, and in some instances, first groove 42 and/or second groove 44 may have a rounded profile, a T-shaped (not shown) profile, or any other profile that may be adapted to accommodate a particular elastomeric seat.
In the illustrative embodiment, valve member 48 may be movable between an open position in which gas flow is permitted through valve cavity 38 and a closed position in which gas does not flow through valve cavity 38. Valve member 48 may be moved in any suitable manner known in the art. For example, valve member 48 may move up and down (in the illustrated orientation) in response to a solenoid, an electric motor, a spring force, or any other appropriate movement mechanism, as desired.
In some instances, a first elastomeric seat 56 may be disposed within first groove 42, and a second elastomeric seat 58 may be disposed within second groove 44. First elastomeric seat 56 and/or second elastomeric seat 58 may extend radially into valve cavity 40, as shown. In some cases, first elastomeric seat 56 may be held in place within first groove 42 via a compressive and/or interference fit, and second elastomeric seat 58 may be held in place within second groove 44 via a compressive and/or interference fit. First elastomeric seat 56 and/or second elastomeric seat 58 may be sized and configured such that they are held in place within the respective first groove 42 and/or second groove 44, but can if necessary be removed and replaced, but this is not required in all embodiments.
First elastomeric seat 56 may extend around at least a substantial portion of first groove 42, and more preferably, all the way around first groove 42 and may be generally annular in shape. Similarly, second elastomeric seat 58 may extend around at least a substantial portion of second groove 44, and more preferably, all the way around second groove 44 and may be generally annular in shape.
It is contemplated that first elastomeric seat 56 and second elastomeric seat 58 may be formed of any material that provides a desired level of flexibility or resiliency while providing sufficient resistance to deformation. In some cases, first elastomeric seat 56 and/or second elastomeric seat 58 may include or be formed of a resilient material such as rubber. In some illustrative embodiments, first elastomeric seat 56 and second elastomeric seat 58 may be formed of the same material and may have similar if not substantially identical flexibility and resiliency characteristics. In other embodiments, first elastomeric seat 56 may be softer than second elastomeric seat 58, or visa-versa. In such a situation, first elastomeric seat 56 may compress somewhat further in order to provide a better seal, while second elastomeric seat 58 may provide sufficient resistance to prevent excessive deformation and/or crushing of the first elastomeric seat 56.
In some cases, as illustrated, first elastomeric seat 56 may include a conical mating surface 60 that provides a surface for first disk 52 to contact. Likewise, second elastomeric seat 58 may, if desired, include a conical mating surface 62 that provides a surface for second disk 54 to contact. In some instances, conical mating surface 60 and/or conical mating surface 62 may help keep valve member 48 centered relative to the first elastomeric seat 56 and/or the second elastomeric seat 58 to help provide a better seal against valve member 48.
While not illustrated, it is contemplated that first elastomeric seat 56 and/or second elastomeric seat 58 may have other profiles. For example, first elastomeric seat 56 and/or second elastomeric seat 58 or at least portions thereof may have an ovoid, circular, rectangular or other profile as may be useful, dependent upon the shape of first disk 52 and/or second disk 54.
It will be appreciated that in assembling gas valve 46, it may be useful to first, for example, dispose second elastomeric seat 58 in place within second groove 44. First elastomeric seat 56 may, if desired, be disposed about valve member 48 somewhere between first disk 52 and second disk 54 by stretching first elastomeric seat 56 over either first disk 52 or second disk 54. Valve member 48 may then be lowered (in the illustrated configuration) into valve cavity 38 and first elastomeric seat 56 may be disposed within first groove 42.
It will be recognized that if valve member 48 enters valve cavity 38 from below, for example, that it may be useful to first install first elastomeric seat 56 within first groove 42, and then to dispose second elastomeric seat 58 about valve member 48 before installing valve member 48 within valve cavity 38 and subsequently installing second elastomeric seat 58 into second groove 44.
Valve cavity 38 may be considered as including an inflow region 64, a first outflow region 66, a second outflow region 68 and an intermediate region 70. In
In some cases, gas valve 46 may be considered as being a balanced port valve in that gas entering inflow region 64 may flow past first disk 52 and out through first outflow region 66 as well as past second disk 54 and out through second outflow region 68. As gas flows past first disk 52, the gas may exert an upward (as illustrated) force on valve member 48. Similarly, as gas flows past second disk 54, the gas may exert a downward (as illustrated) force on valve member 48. These upwardly and downwardly applied forces may at least partially cancel each other out, meaning that a smaller net force is needed to move valve member 48 either up or down in order to either open or close gas valve 46.
The invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the invention can be applicable will be readily apparent to those of skill in the art upon review of the instant specification.
Number | Name | Date | Kind |
---|---|---|---|
424581 | Sickels | Apr 1890 | A |
1156977 | Cloos | Oct 1915 | A |
2403692 | Tibbetts | Jul 1946 | A |
2791238 | Bryant | May 1957 | A |
2975307 | Schroeder et al. | Mar 1961 | A |
3202170 | Holbrook | Aug 1965 | A |
3304406 | King | Feb 1967 | A |
3381623 | Elliott | May 1968 | A |
3414010 | Sparrow | Dec 1968 | A |
3641373 | Elkuch | Feb 1972 | A |
3769531 | Elkuch | Oct 1973 | A |
3803424 | Smiley et al. | Apr 1974 | A |
3884266 | Kondo | May 1975 | A |
3947644 | Uchikawa | Mar 1976 | A |
3960364 | Hargrave | Jun 1976 | A |
3973576 | Dietiker et al. | Aug 1976 | A |
3973976 | Boyd | Aug 1976 | A |
3993939 | Slavin et al. | Nov 1976 | A |
4115036 | Paterson | Sep 1978 | A |
4140936 | Bullock | Feb 1979 | A |
4188013 | Battersby et al. | Feb 1980 | A |
4188972 | van der Zee | Feb 1980 | A |
4197737 | Pittman | Apr 1980 | A |
4242080 | Tabei | Dec 1980 | A |
4360955 | Block | Nov 1982 | A |
4402340 | Lockwood, Jr. | Sep 1983 | A |
4418886 | Holzer | Dec 1983 | A |
4442853 | Gort | Apr 1984 | A |
4450868 | Duval et al. | May 1984 | A |
4453169 | Martner | Jun 1984 | A |
4478076 | Bohrer | Oct 1984 | A |
4478077 | Bohrer et al. | Oct 1984 | A |
4498850 | Perlov et al. | Feb 1985 | A |
4501144 | Higashi et al. | Feb 1985 | A |
4539575 | Nilsson | Sep 1985 | A |
4543974 | Dietiker et al. | Oct 1985 | A |
4576050 | Lambert | Mar 1986 | A |
4581624 | OConnor | Apr 1986 | A |
4585209 | Aine et al. | Apr 1986 | A |
4619438 | Coffee | Oct 1986 | A |
4651564 | Johnson et al. | Mar 1987 | A |
4654546 | Kirjavainen | Mar 1987 | A |
4722360 | Odajima et al. | Feb 1988 | A |
4756508 | Giachino et al. | Jul 1988 | A |
4821999 | Ohtaka | Apr 1989 | A |
4829826 | Valentin et al. | May 1989 | A |
4836247 | Chuang | Jun 1989 | A |
4898200 | Odajima et al. | Feb 1990 | A |
4911616 | Laumann, Jr. | Mar 1990 | A |
4938742 | Smits | Jul 1990 | A |
4939405 | Okuyama et al. | Jul 1990 | A |
5022435 | Jaw-Shiunn | Jun 1991 | A |
5065978 | Albarda et al. | Nov 1991 | A |
5069419 | Jerman | Dec 1991 | A |
5078581 | Blum et al. | Jan 1992 | A |
5082242 | Bonne et al. | Jan 1992 | A |
5082246 | Stanley et al. | Jan 1992 | A |
5085562 | van Lintel | Feb 1992 | A |
5096388 | Weinberg | Mar 1992 | A |
5129794 | Beatty | Jul 1992 | A |
5148074 | Fujita et al. | Sep 1992 | A |
5171132 | Miyazaki et al. | Dec 1992 | A |
5176358 | Bonne et al. | Jan 1993 | A |
5180288 | Richter et al. | Jan 1993 | A |
5180623 | Ohnstein | Jan 1993 | A |
5186054 | Sekimura | Feb 1993 | A |
5192197 | Culp | Mar 1993 | A |
5193993 | Dietiker | Mar 1993 | A |
5203688 | Dietiker | Apr 1993 | A |
5206557 | Bobbio | Apr 1993 | A |
5215115 | Dietiker | Jun 1993 | A |
5219278 | van Lintel | Jun 1993 | A |
5224843 | van Lintel | Jul 1993 | A |
5244527 | Aoyagi | Sep 1993 | A |
5244537 | Ohnstein | Sep 1993 | A |
5263514 | Reeves | Nov 1993 | A |
5322258 | Bosch et al. | Jun 1994 | A |
5323999 | Bonne et al. | Jun 1994 | A |
5325880 | Johnson et al. | Jul 1994 | A |
5336062 | Richter | Aug 1994 | A |
5368571 | Horres, Jr. | Nov 1994 | A |
5441597 | Bonne et al. | Aug 1995 | A |
5452878 | Gravesen et al. | Sep 1995 | A |
5499909 | Yamada et al. | Mar 1996 | A |
5526172 | Kanack | Jun 1996 | A |
5529465 | Zengerle et al. | Jun 1996 | A |
5536963 | Polla | Jul 1996 | A |
5541465 | Higuchi et al. | Jul 1996 | A |
5552654 | Konno et al. | Sep 1996 | A |
5571401 | Lewis et al. | Nov 1996 | A |
5642015 | Whitehead et al. | Jun 1997 | A |
5683159 | Johnson | Nov 1997 | A |
5696662 | Bauhahn | Dec 1997 | A |
5725363 | Bustgens et al. | Mar 1998 | A |
5735503 | Hietkamp | Apr 1998 | A |
5759014 | Van Lintel | Jun 1998 | A |
5759015 | Van Lintel et al. | Jun 1998 | A |
5792957 | Luder et al. | Aug 1998 | A |
5808205 | Romo | Sep 1998 | A |
5822170 | Cabuz et al. | Oct 1998 | A |
5836750 | Cabuz | Nov 1998 | A |
5839467 | Saaski et al. | Nov 1998 | A |
5863708 | Zanzucchi et al. | Jan 1999 | A |
5901939 | Cabuz et al. | May 1999 | A |
5911872 | Lewis et al. | Jun 1999 | A |
5944257 | Dietiker et al. | Aug 1999 | A |
5954079 | Barth et al. | Sep 1999 | A |
5971355 | Biegelsen et al. | Oct 1999 | A |
6050281 | Adams et al. | Apr 2000 | A |
6106245 | Cabuz | Aug 2000 | A |
6109889 | Zengerle et al. | Aug 2000 | A |
6116863 | Ahn et al. | Sep 2000 | A |
6122973 | Nomura et al. | Sep 2000 | A |
6151967 | McIntosh et al. | Nov 2000 | A |
6167761 | Hanzawa et al. | Jan 2001 | B1 |
6179586 | Herb et al. | Jan 2001 | B1 |
6182941 | Scheurenbrand et al. | Feb 2001 | B1 |
6184607 | Cabuz et al. | Feb 2001 | B1 |
6189568 | Bergum et al. | Feb 2001 | B1 |
6215221 | Cabuz et al. | Apr 2001 | B1 |
6240944 | Ohnstein et al. | Jun 2001 | B1 |
6288472 | Cabuz et al. | Sep 2001 | B1 |
6373682 | Goodwin-Johansson | Apr 2002 | B1 |
6418793 | Pechoux et al. | Jul 2002 | B1 |
6445053 | Cho | Sep 2002 | B1 |
6496348 | McIntosh | Dec 2002 | B2 |
6505838 | Cavaliere | Jan 2003 | B1 |
6508528 | Fujii et al. | Jan 2003 | B2 |
6520753 | Grosjean et al. | Feb 2003 | B1 |
6561791 | Vrolijk et al. | May 2003 | B1 |
6571817 | Bohan, Jr. | Jun 2003 | B1 |
6579087 | Vrolijk | Jun 2003 | B1 |
6590267 | Goodwin-Johansson et al. | Jul 2003 | B1 |
6640642 | Onose et al. | Nov 2003 | B1 |
6651506 | Lee et al. | Nov 2003 | B2 |
6814102 | Hess et al. | Nov 2004 | B2 |
6880548 | Schultz et al. | Apr 2005 | B2 |
6983759 | Maichel et al. | Jan 2006 | B2 |
6994308 | Wang et al. | Feb 2006 | B1 |
7089959 | Cai | Aug 2006 | B2 |
20020078756 | Akiyama et al. | Jun 2002 | A1 |
20020174706 | Gokhfeld | Nov 2002 | A1 |
20030005774 | Suzuki et al. | Jan 2003 | A1 |
20030019299 | Horie et al. | Jan 2003 | A1 |
20030020033 | Wang | Jan 2003 | A1 |
20030033884 | Beekhuizen et al. | Feb 2003 | A1 |
20030189809 | Ishikura | Oct 2003 | A1 |
20030205090 | Jakobsen | Nov 2003 | A1 |
20040035211 | Pinto et al. | Feb 2004 | A1 |
20040060360 | Chen | Apr 2004 | A1 |
20060043323 | Wang et al. | Mar 2006 | A1 |
20060226387 | Kidprasert | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
19617852 | Oct 1997 | DE |
0744821 | Nov 1996 | EP |
02-086258 | Mar 1990 | JP |
05-219760 | Aug 1993 | JP |
744877 | Jun 1980 | SU |
9729538 | Aug 1997 | WO |
0028215 | May 2000 | WO |
0133078 | May 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20080128037 A1 | Jun 2008 | US |