The invention relates to a gaseous fuel admixing device for a gas-powered internal combustion engine.
For a fault-free and low-pollution combustion of gas-powered internal combustion engines, a precise admixing of the gaseous fuel into the air flowing through an intake pipe of the internal combustion engine is required.
A gas metering valve configured as a gaseous fuel injection value for the combustion chamber of a reciprocating gas engine is known from AT 502 512 A4 2007-04-15, the valve body of which is actuated by an electromagnet and has a contour such that the cross-sectional area of a gap formed between the valve body and an outlet opening varies linearly with movement of the valve body.
A flow valve for controlling the air mass flow-rate is known from DE 34 10 909 A1, the valve body of which has an outer surface or contour such that the cross-sectional area of a between the valve and an outlet opening progressively increases with movement of the valve body in an opening direction.
A gaseous fuel metering valve is described in U.S. Pat. No. 6,508,418 B1, the valve body of which ends in a spherical surface, which abuts on a conically-narrowing seat surface in the closed position. DE 600 25090 T2 describes a gas metering valve configured similar thereto.
U.S. Pat. No. 7,621,469 B2 describes a gas metering valve, in which the valve member is formed as a sphere and abuts on a valve seat, which narrows in a spherically-shaped manner, in the closed position.
U.S. Pat. No. 6,666,193 B2 describes a gas metering valve, the valve body of which ends in a spherical end surface, the radius of curvature of which is the same as the radius of curvature of an end portion of a seat surface.
The object underlying the invention is to provide a gaseous fuel admixing device for a gas-powered internal combustion engine that makes possible a predetermined composition, which is homogeneous as possible, of the gaseous fuel-air mixture supplied to a combustion chamber of the internal combustion engine.
Claim 1 is directed to a gaseous fuel admixing device for solving the above-mentioned object.
In the inventive gaseous fuel admixing device, since the gaseous fuel-flow flows into the air flow approximately perpendicular to the air flow directed through the intake pipe, a good mixture of the two flows is achieved.
It is possible with the features of claim 2 to mix the gaseous fuel, in a need-based manner, to maintain a predetermined mixture ratio, which is precise as possible and which can vary in dependence on the load of the internal combustion engine.
Claim 3 denotes an advantageous embodiment of the guiding of the gaseous fuel flow before its entry into the intake pipe.
With the features of claim 4, it is achieved that the gaseous fuel flow entering into the intake pipe infuses into the flow present in the intake pipe as thoroughly as possible.
Claims 5 to 10 denote features of the inventive gaseous fuel admixing device that are advantageous for a precise admixing of the gaseous fuel.
The invention will be explained in the following with the assistance of schematic drawings of an exemplary embodiment.
A housing 12 of the gaseous fuel admixing device, which is denoted with 14 as a whole, is affixed to the intake pipe 10; for example it is screw fastened to the intake pipe 10. A guide component 16 is disposed in the housing; a valve body 18 is guided in the guide component 16 in a longitudinally-movable manner, in the depicted example in the vertical direction. A gaseous fuel supply conduit 20 leads into an inner chamber of the housing 12. The guide component 16 ends in an outlet opening 22 formed in the bottom wall of the housing; a metering end portion 24 of the valve body 18 projects into the outlet opening 22 more or less deep in accordance with its position. According to
An actuator 29, e.g., a step motor, whose output shaft 30 is screw fastened to the valve body 18, serves to move the valve body 18, so that the valve body moves linearly with rotation of the output shaft. The rotational position of the output shaft 30 can be sensed by a rotary position encoder/sensor 32.
Further, an electronic control apparatus 34 is accommodated in the housing 12, which supplies signals via wires 36, such as a load signal, which indicates the position of a not-depicted load controlling element for adjusting the load of the internal combustion engine, the output signal of the rotary position encoder 32, the output signal of an oxygen sensor 38 disposed in the exhaust system, as well as optionally additional signals, such as the temperature of the internal combustion engine, the mass flow of the intake pipe flow 41, the pressure in the intake pipe 10, etc. The overall functions of the above-described functional groups are known and thus will not be described in further detail. The gaseous fuel supply conduit 20 is connected with a gaseous fuel source, which supplies gaseous fuel to the gaseous fuel supply conduit 20, preferably at a constant pressure. This gaseous fuel 20 is fed into the intake pipe flow Φ1 in an amount, which is determined by the position of the valve body 18 and the pressure difference between the pressure in the intake pipe 10 and the pressure of the gaseous fuel 20, through the outlet 28 as a gaseous fuel flow Φ2 approximately perpendicular to the direction of the intake pipe flow Φ1 and is redirected by the intake pipe flow Φ1 while mixing therein, so that a mixture flow Φ3 is supplied to the internal combustion engine.
Further details of the inventive gaseous fuel admixing device will be explained with the assistance of the following Figures.
The contour or outer surface of the metering end portion 24 of the valve body 18, which is illustrated in an exemplary manner in
During the controlling or regulation of the admixing of the gaseous fuel flow into the intake pipe flow, the following criteria are to be fulfilled:
1. For a precise lambda regulation, i.e. control of the ratio of the mass flow of the intake pipe flow Φ1 to the mass flow of the gaseous fuel flow Φ2 such that a predetermined value, which can depend on the operational parameters of the internal combustion engine, is maintained, a high level of control quality, i.e. a small step width, is required.
2. The mixture flow Φ3 or the total mass flow must instantaneously follow as much as possible the load requirements on the internal combustion engine, i.e. the position of the load controlling element, such as a throttle valve disposed in the intake pipe 10 upstream of the outlet 28, i.e. it must be changeable within a short time between a minimal valve and a maximal value. The gaseous fuel mass flow must follow this total mass flow, i.e. it also must be changeable within a short time from a minimal value to a maximal value.
So that the second-mentioned criterion is fulfilled, the step motor can be controlled by the electronic control apparatus 34 with a corresponding rapid change of the load requirement, e.g., within 50 ms it can be moved by 1,500 steps, so that a rapid tuning of the gaseous fuel flow Φ1 to the intake pipe flow Φ2, e.g., the fresh air flow, controlled by the load controlling element, is possible. The changing of the gaseous fuel flow in dependence on the intake pipe flow takes place in a controlled manner, preferably by storing in the electronic control apparatus 34 the dependence of the position of the valve body 18 on the load controlling element or on the output signal of a mass flow measuring apparatus disposed in the intake pipe upstream of the outlet 28. The actuator 29, which is preferably configured as a stepper motor, displaces the valve body in accordance with this feed forward control (driver control), wherein the position of the valve body is sensed by the rotary position encoder 32. Superimposed onto the feed forward control (driver control) of the gaseous fuel flow, a controlling of the position of the valve body 18 preferably takes place in the control apparatus 34 with the assistance of the output signal of the oxygen sensor 38. If the output signal of the lambda sensor 38 deviates from a target value, which is accessible in the electronic control apparatus 34, a stepwise adjustment of the valve body 18 takes place such that the deviation returns to zero as much as possible. So that a high level of control quality is achieved, the step width of the stepper motor or actuator 29 during a control operation decreases in the range of larger gaseous fuel mass flows. As is apparent from
The invention, which was described above in an exemplary manner, can be modified in various ways:
The non-linear dependence of the cross-section of the annular gap 42 can also be achieved by the position of the valve body 18 such that the valve body or its metering end portion 24 has a constant cross-section and the outlet opening 22 is formed with a varying cross-section in the axial direction. The flow guiding surface 26 need not be formed directly in the bottom wall 40 of the housing 12, but rather can be formed by a separate flow guiding part, which ends in the outlet 28.
To actuate the valve body 18, various actuators could be provided, e.g., pneumatic or hydraulic actuators, which preferably do not necessarily have to operate as stepper actuators.
The gaseous fuel admixing device is preferably entirely accommodated in the housing 12 so that it can be mounted on any existing intake pipe, wherein the intake pipe need only be furnished with a hole. The intake pipe need not necessarily have a circular cross-section.
The slit forming the outlet need not necessarily be formed on a flow guiding surface that leads from the outlet opening to the slit.
With the inventive gaseous fuel admixing device, the following advantages, among others, are achieved:
The gaseous fuel can be changed between idling and full throttle with a high dynamic of displacement.
Lambda regulation can take place at every operational point with high precision.
The combustible gas mixture supplied to the internal combustion engine exhibits a good homogeneity.
The device is applicable to various engines in a simple manner, because the adaptation can take place merely by software changes.
The device combines, preferably in a simple compact form, the functionalities, gas admixing, gas metering to the fresh air and the gas-/air mixture formation in only one component.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2012/004953 | 11/30/2012 | WO | 00 |